Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105038401> ?p ?o ?g. }
- W2105038401 endingPage "10" @default.
- W2105038401 startingPage "6" @default.
- W2105038401 abstract "HomeRadiologyVol. 259, No. 1 PreviousNext Reviews and CommentaryControversiesAre X-Ray Backscatter Scanners Safe for Airport Passenger Screening? For Most Individuals, Probably Yes, but a Billion Scans per Year Raises Long-Term Public Health ConcernsDavid J. Brenner David J. Brenner Author AffiliationsFrom the Center for Radiological Research, Columbia University Medical Center, 630 W 168th St, New York, NY 10032.Address correspondence to the author (e-mail: [email protected]).David J. Brenner Published Online:Apr 1 2011https://doi.org/10.1148/radiol.11102347MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In AbstractFrom a public health policy perspective, given that up to 1 billion such scans per year are now possible in the United States, we should have concerns about the long-term consequences of an extremely large number of people all being exposed to a likely extremely small radiation-induced cancer risk—in particular given that there are current practical alternatives that do not involve ionizing radiation.References1 Hallowell SF. Screening people for illicit substances: a survey of current portal technology. Talanta 2001;54(3):447–458. Crossref, Medline, Google Scholar2 Smith SW. inventor; Rapiscan Security Products Inc, assignee. X-ray backscatter imaging system including moving body tracking assembly. U.S. patent 6,094,472. July 25, 2000. Google Scholar3 National Council on Radiation Protection and Measurements. Screening of humans for security purposes using ionizing radiation scanning systems. NCRP commentary no. 16 Bethesda, Md: National Council on Radiation Protection and Measurements, 2003. Google Scholar4 American National Standards Institute. American national standard radiation safety for personnel screening systems using x-ray or gamma radiation. ANSI report no. ANSI/HPS N43.17-2009. Washington, DC: American National Standards Institute, 2009. Google Scholar5 Duffy M, Thompson M. The lessons of flight 253. Time 2010;175(1):26. Medline, Google Scholar6 Lord S. TSA is increasing procurement and deployment of the advanced imaging technology, but challenges to this effort and other areas of aviation security remain. Government Accountability Office report no. GAO-10-484T. Washington, DC: Government Accountability Office, 2010. Google Scholar7 Federal Aviation Administration. FAA aerospace forecast: fiscal years 2010–2030 Washington, DC: Federal Aviation Administration, 2010. Google Scholar8 Rez P, Metzger RL, Mossman KL. The dose from Compton backscatter screening. Radiat Prot Dosimetry doi:10.1093/rpd/ncq358. Published online November 9, 2010. Medline, Google Scholar9 Sheen DM, McMakin DL, Hall TE. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans Microw Theory Tech 2001;49(9):1581–1592. Crossref, Google Scholar10 Cothern CR, Marcus WL. Estimating risk for carcinogenic environmental contaminants and its impact on regulatory decision making. Regul Toxicol Pharmacol 1984;4(3):265–274. Crossref, Medline, Google Scholar11 Stallen PJM, Geerts R, Vrijling HK. Three conceptions of quantified societal risk. Risk Anal 1996;16(5):635–644. Crossref, Google Scholar12 Bernoulli J. On the law of large numbers: part four of Ars Conjectandi. Sheynin O, trans. Berlin, Germany: NG Verlag, 2005. Google Scholar13 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 1991;21(1-3):1–201. Crossref, Google Scholar14 Radiological protection policy for the disposal of radioactive waste: adopted by the Commission in May 1997. International Commission on Radiation Protection. Ann ICRP 1997;27(suppl):1–21. Crossref, Google Scholar15 National Council on Radiation Protection and Measurements. Limitations of exposure to ionizing radiation. Report no. 116 Bethesda, Md: National Council on Radiation Protection and Measurements, 1993. Google Scholar16 National Council on Radiation Protection and Measurements. Principles and application of collective dose in radiation protection. NCRP report no. 121. Bethesda, Md: National Council on Radiation Protection and Measurements, 1995. Google Scholar17 Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 1997;349(9064):1498–1504. Crossref, Medline, Google Scholar18 Ezzati MLopez ADMurray CJLRodgers A, eds. Comparative quantification of health risks. Geneva, Switzerland: World Health Organization, 2004. Google Scholar19 Horn ME, Fulton N, Westcott M. Measures of societal risk and their potential use in civil aviation. Risk Anal 2008;28(6):1711–1726. Crossref, Medline, Google Scholar20 Jonkman SN, Jongejan R, Maaskant B. The use of individual and societal risk criteria within the Dutch flood safety policy: nationwide estimates of societal risk and policy applications. Risk Anal doi: 10.1111/j.1539-6924.2010.01502.x. Published online September 30, 2010. Medline, Google Scholar21 Öberg M, Jaakkola MS, Woodward A, Peruga A, Prüss-Ustün A. Worldwide burden of disease from exposure to second-hand smoke: a retrospective analysis of data from 192 countries. Lancet 2011;377(9760):139–146.. Crossref, Medline, Google Scholar22 Fairlie I, Sumner D. In defence of collective dose. J Radiol Prot 2000;20(1):9–19. Crossref, Medline, Google Scholar23 Brenner DJ, Doll R, Goodhead DT, et al.. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci U S A 2003;100(24):13761–13766. Crossref, Medline, Google Scholar24 Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K. Studies of mortality of atomic bomb survivors: report 13—solid cancer and noncancer disease mortality, 1950-1997. Radiat Res 2003;160(4):381–407. Crossref, Medline, Google Scholar25 Land CE. Estimating cancer risks from low doses of ionizing radiation. Science 1980;209(4462):1197–1203. Crossref, Medline, Google Scholar26 The 2007 recommendations of the International Commission on Radiological Protection: ICRP publication 103. Ann ICRP 2007;37(2-4):1–332. Crossref, Google Scholar27 National Council on Radiation Protection and Measurements. Evaluation of the linear nonthreshold dose-response model for ionizing radiation. NCRP report no. 136. Bethesda, Md: National Council on Radiation Protection and Measurements, 2001. Google Scholar28 United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation: UNSCEAR 2000 report to the general assembly New York, NY: United Nations, 2000. Crossref, Google Scholar29 National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII Washington, DC: National Academies Press, 2006. Google Scholar30 Brenner DJ. Extrapolating radiation-induced cancer risks from low doses to very low doses. Health Phys 2009;97(5):505–509. Crossref, Medline, Google Scholar31 Tubiana M. Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: the joint report of the Académie des Sciences (Paris) and of the Académie Nationale de Médecine. Int J Radiat Oncol Biol Phys 2005;63(2):317–319. Crossref, Medline, Google Scholar32 Redpath JL, Elmore E. Radiation-induced neoplastic transformation in vitro, hormesis and risk assessment. Dose Response 2007;5(2):123–130. Crossref, Google Scholar33 Barcellos-Hoff MH. It takes a tissue to make a tumor: epigenetics, cancer and the microenvironment. J Mammary Gland Biol Neoplasia 2001;6(2):213–221. Crossref, Medline, Google Scholar34 Zhou H, Suzuki M, Randers-Pehrson G, et al.. Radiation risk to low fluences of alpha particles may be greater than we thought. Proc Natl Acad Sci U S A 2001;98(25):14410–14415. Crossref, Medline, Google Scholar35 Bonmassar E, Menconi E, Goldin A, Cudkowicz G. Escape of small numbers of allogeneic lymphoma cells from immune surveillance. J Natl Cancer Inst 1974;53(2):475–479. Crossref, Medline, Google Scholar36 Shuryak I, Sachs RK, Brenner DJ. Cancer risks after radiation exposure in middle age. J Natl Cancer Inst 2010;102(21):1628–1636. Crossref, Medline, Google Scholar37 Liang D, Marnane W, Bradford S. Comparison of US and European airports and airspace to support concept validation. Presented at the third USA/Europe Air Traffic Management R&D Seminar, Naples, Italy, June 13–16, 2000. Google Scholar38 Clarke R. Control of low-level radiation exposure: time for a change? J Radiol Prot 1999;19(2):107–115. Crossref, Medline, Google Scholar39 Lindell B. On collective dose. J Radiol Prot 2000;20(1):1–2. Crossref, Medline, Google Scholar40 Barraclough IM, Robb JD, Robinson CA, Smith KR, Cooper JR. The use of estimates of collective dose to the public. J Radiol Prot 1996;16(2):73–80. Crossref, Google Scholar41 Kocher DC. Perspective on the historical development of radiation standards. Health Phys 1991;61(4):519–527. Crossref, Medline, Google Scholar42 Beneduci A. Review on the mechanisms of interaction between millimeter waves and biological systems. In: Bernstein ME, ed. Bioelectrochemistry research developments. New York, NY: Novascience, 2008; 35–80. Google Scholar43 Mason PA, Walters TJ, DiGiovanni J, et al.. Lack of effect of 94 GHz radio frequency radiation exposure in an animal model of skin carcinogenesis. Carcinogenesis 2001;22(10):1701–1708. Crossref, Medline, Google Scholar44 Chalfin S, D’Andrea JA, Comeau PD, Belt ME, Hatcher DJ. Millimeter wave absorption in the nonhuman primate eye at 35 GHz and 94 GHz. Health Phys 2002;83(1):83–90. Crossref, Medline, Google Scholar45 Vijayalaxmi, Logani MK, Bhanushali A, Ziskin MC, Prihoda TJ. Micronuclei in peripheral blood and bone marrow cells of mice exposed to 42 GHz electromagnetic millimeter waves. Radiat Res 2004;161(3):341–345. Crossref, Medline, Google Scholar46 Vijayalaxmi. Cytogenetic studies in human blood lymphocytes exposed in vitro to 2.45 GHz or 8.2 GHz radiofrequency radiation. Radiat Res 2006;166(3):532–538. Crossref, Medline, Google Scholar47 Zhadobov M, Sauleau R, Le Coq L, et al.. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins. Bioelectromagnetics 2007;28(3):188–196. Crossref, Medline, Google Scholar48 Nicolas Nicolaz C, Zhadobov M, Desmots F, et al.. Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Cell Biol Toxicol 2009;25(5):471–478. Crossref, Medline, Google Scholar49 Beneduci A. Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells. Cell Biochem Biophys 2009;55(1):25–32. Crossref, Medline, Google Scholar50 Stein JA. X-ray imaging with a scanning beam. Radiology 1975;117(3 pt 1):713–716. Link, Google Scholar51 Wilson AJ, Ramsby GR. Skeletal measurements using a flying spot digital imaging device. AJR Am J Roentgenol 1987;149(2):339–343. Crossref, Medline, Google Scholar52 Johns Hopkins University Applied Physics Laboratory. Radiation safety engineering assessment report for the Rapiscan Secure 1000 in single pose configuration. Report no. NSTD-09-1085 version 2.0. Laurel, Md: Johns Hopkins University, 2010. Google ScholarArticle HistoryReceived November 26, 2010; final version accepted December 10.Published online: Apr 2011Published in print: Apr 2011 FiguresReferencesRelatedDetailsCited ByPERIOD 2 regulates low-dose radioprotection via PER2/pGSK3β/β-catenin/Per2 loopAris T.Alexandrou, YixinDuan, ShanxiuXu, CliffordTepper, MingFan, JasonTang, JonathanBerg, WassimBasheer, TylerValicenti, Paul F.Wilson, Matthew A.Coleman, Andrew T.Vaughan, LoningFu, David J.Grdina, JeffereyMurley, AijunWang, GayleWoloschak, Jian JianLi2022 | iScience, Vol. 25, No. 12X-ray Compton backscattering imaging via structured lightEdgarSalazar, XiaokangLiu, GonzaloArce2022 | Optics Express, Vol. 30, No. 9The recalcitrant invention of X-ray imagesMichelleGibbons2019 | Technical Communication Quarterly, Vol. 28, No. 1Detection of explosive materials and their precursors through translucent commercial bottles using spatially offset Raman spectroscopy using excitation wavelength in visible rangeSanjayGulia, Kamal K.Gulati, VijayetaGambhir, RinkuSharma2019 | Optical Engineering, Vol. 58, No. 12Resilience-based design of urban centres: application to blast risk assessmentShadySalem, ManuelCampidelli, Wael W.El-Dakhakhni, Michael J.Tait2018 | Sustainable and Resilient Infrastructure, Vol. 3, No. 2Privacy and Criminal JusticeDanielMarshall, TerryThomas2017Trace detection of explosive and their derivatives in stand-off mode using time gated Raman spectroscopySanjayGulia, Kamal K.Gulati, VijayetaGambhir, RinkuSharma, M.N.Reddy2016 | Vibrational Spectroscopy, Vol. 87Effect of X-ray exposure on the pharmaceutical quality of drug tablets using X-ray inspection equipmentKazuakiUehara, TatsuakiTagami, ItaruMiyazaki, NorikazuMurata, YoshifumiTakahashi, HiroshiOhkubo, TetsuyaOzeki2015 | Drug Development and Industrial Pharmacy, Vol. 41, No. 6Ambient x-ray pollution assessment at inspection gates of airports- a case study of Mehrabad and Imam Khomeini Airports in IranGholamhosseinPourtaghi, FirouzValipour, SepidehNourian, AmirabbasMofidi2014 | Journal of Environmental Health Science and Engineering, Vol. 12, No. 1Percutaneous Renal SurgeryDon C.Arnold, Kirk M.Anderson, D.Duane Baldwin2013Imaging in airport security: Past, present, future, and the link to forensic and clinical radiologyOlive EmilWetter2013 | Journal of Forensic Radiology and Imaging, Vol. 1, No. 4Inguinal Hernia and Airport Scanners: An Emerging Indication for Repair?VijayNaraynsingh, Shamir O.Cawich, RaviMaharaj, DilipDan2013 | Case Reports in Medicine, Vol. 2013Aviation war risk insurance and its impacts on US passenger aviationPaul J.Freitas2013 | Journal of Transport Literature, Vol. 7, No. 2UreteroscopyDon C.Arnold, D. DuaneBaldwin2013Operational and human factors issues of new airport security technology—two case studiesFranziskaHofer, Olive E.Wetter2012 | Journal of Transportation Security, Vol. 5, No. 4Backscatter x-ray machines at airports are safeElifHindié, David J.Brenner, Colin G.Orton2012 | Medical Physics, Vol. 39, No. 8Estimation of organ and effective dose due to Compton backscatter security scansMichael E.Hoppe, Taly GilatSchmidt2012 | Medical Physics, Vol. 39, No. 6Part1The Industry of CT ScanningM.Castillo2012 | American Journal of Neuroradiology, Vol. 33, No. 4The X-ray BSF measurement influenced by the field sizeNur Asyikin Ahmad Nazri, Noor Arda Adrina Daud., NorjuliyatiHamzah, MSSalikin2011Dec1Radiation Risk from Airport X-ray Backscatter Scanners: Should We Fear the Microsievert?Paolo Zanotti-Fregonara, , Elif Hindié, , and 1 October 2011 | Radiology, Vol. 261, No. 1Recommended Articles Is Background Parenchymal Enhancement an Important Risk Factor for Breast Cancer Development in Women with Increased Risk?Radiology2019Volume: 292Issue: 3pp. 562-563Increasing the Utilization of Moderate Sedation Services for Pediatric ImagingRadioGraphics2021Volume: 41Issue: 7pp. 2127-2135Supplemental Breast Cancer Screening in Women with Dense Breasts and Negative Mammography: A Systematic Review and Meta-AnalysisRadiology2023Volume: 306Issue: 3Contemporary Risk Management for RadiologistsRadioGraphics2018Volume: 38Issue: 6pp. 1717-1728Comparative Effectiveness of Thermal Ablation, Surgical Resection, and Active Surveillance for T1a Renal Cell Carcinoma: A Surveillance, Epidemiology, and End Results (SEER)–Medicare-linked Population StudyRadiology2018Volume: 288Issue: 1pp. 81-90See More RSNA Education Exhibits Patient Dose Calculation and Counseling using Open Source Mobile AppDigital Posters2019Letâs Talk about Next-Generation Breast Cancer Screening Programs: How Should We Do? What Should We Use?Digital Posters2020Radiation Exposure in Pregnancy: Itâs Hot in Here!Digital Posters2019 RSNA Case Collection Tuberculous meningitisRSNA Case Collection2021Intracranial TBRSNA Case Collection2022Tuberculous Leptomeningitis with Vasculitic InfarctRSNA Case Collection2021 Vol. 259, No. 1 Metrics Altmetric Score PDF download" @default.
- W2105038401 created "2016-06-24" @default.
- W2105038401 creator A5048201953 @default.
- W2105038401 date "2011-04-01" @default.
- W2105038401 modified "2023-10-15" @default.
- W2105038401 title "Are X-Ray Backscatter Scanners Safe for Airport Passenger Screening? For Most Individuals, Probably Yes, but a Billion Scans per Year Raises Long-Term Public Health Concerns" @default.
- W2105038401 cites W1568892636 @default.
- W2105038401 cites W1944620798 @default.
- W2105038401 cites W1966648402 @default.
- W2105038401 cites W1976256219 @default.
- W2105038401 cites W1982513951 @default.
- W2105038401 cites W1988045898 @default.
- W2105038401 cites W1989117724 @default.
- W2105038401 cites W2003175025 @default.
- W2105038401 cites W2012648985 @default.
- W2105038401 cites W2021551701 @default.
- W2105038401 cites W2028725805 @default.
- W2105038401 cites W2033278098 @default.
- W2105038401 cites W2059040453 @default.
- W2105038401 cites W2061434251 @default.
- W2105038401 cites W2066422591 @default.
- W2105038401 cites W2068383764 @default.
- W2105038401 cites W2075324914 @default.
- W2105038401 cites W2099893377 @default.
- W2105038401 cites W2103838773 @default.
- W2105038401 cites W2105271448 @default.
- W2105038401 cites W2112334970 @default.
- W2105038401 cites W2113074737 @default.
- W2105038401 cites W2118238722 @default.
- W2105038401 cites W2134258634 @default.
- W2105038401 cites W2155684415 @default.
- W2105038401 cites W2156570109 @default.
- W2105038401 cites W2156724107 @default.
- W2105038401 cites W2158925223 @default.
- W2105038401 cites W2163419397 @default.
- W2105038401 cites W2171465583 @default.
- W2105038401 cites W2398072582 @default.
- W2105038401 cites W3095914046 @default.
- W2105038401 cites W4231348715 @default.
- W2105038401 cites W4250477264 @default.
- W2105038401 doi "https://doi.org/10.1148/radiol.11102347" @default.
- W2105038401 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21436091" @default.
- W2105038401 hasPublicationYear "2011" @default.
- W2105038401 type Work @default.
- W2105038401 sameAs 2105038401 @default.
- W2105038401 citedByCount "28" @default.
- W2105038401 countsByYear W21050384012012 @default.
- W2105038401 countsByYear W21050384012013 @default.
- W2105038401 countsByYear W21050384012014 @default.
- W2105038401 countsByYear W21050384012015 @default.
- W2105038401 countsByYear W21050384012016 @default.
- W2105038401 countsByYear W21050384012017 @default.
- W2105038401 countsByYear W21050384012018 @default.
- W2105038401 countsByYear W21050384012019 @default.
- W2105038401 countsByYear W21050384012021 @default.
- W2105038401 countsByYear W21050384012022 @default.
- W2105038401 crossrefType "journal-article" @default.
- W2105038401 hasAuthorship W2105038401A5048201953 @default.
- W2105038401 hasConcept C121332964 @default.
- W2105038401 hasConcept C138816342 @default.
- W2105038401 hasConcept C142724271 @default.
- W2105038401 hasConcept C30354325 @default.
- W2105038401 hasConcept C41008148 @default.
- W2105038401 hasConcept C555944384 @default.
- W2105038401 hasConcept C61797465 @default.
- W2105038401 hasConcept C62520636 @default.
- W2105038401 hasConcept C71924100 @default.
- W2105038401 hasConcept C76155785 @default.
- W2105038401 hasConcept C99454951 @default.
- W2105038401 hasConceptScore W2105038401C121332964 @default.
- W2105038401 hasConceptScore W2105038401C138816342 @default.
- W2105038401 hasConceptScore W2105038401C142724271 @default.
- W2105038401 hasConceptScore W2105038401C30354325 @default.
- W2105038401 hasConceptScore W2105038401C41008148 @default.
- W2105038401 hasConceptScore W2105038401C555944384 @default.
- W2105038401 hasConceptScore W2105038401C61797465 @default.
- W2105038401 hasConceptScore W2105038401C62520636 @default.
- W2105038401 hasConceptScore W2105038401C71924100 @default.
- W2105038401 hasConceptScore W2105038401C76155785 @default.
- W2105038401 hasConceptScore W2105038401C99454951 @default.
- W2105038401 hasIssue "1" @default.
- W2105038401 hasLocation W21050384011 @default.
- W2105038401 hasLocation W21050384012 @default.
- W2105038401 hasOpenAccess W2105038401 @default.
- W2105038401 hasPrimaryLocation W21050384011 @default.
- W2105038401 hasRelatedWork W1506200166 @default.
- W2105038401 hasRelatedWork W1995515455 @default.
- W2105038401 hasRelatedWork W2048182022 @default.
- W2105038401 hasRelatedWork W2080531066 @default.
- W2105038401 hasRelatedWork W2604872355 @default.
- W2105038401 hasRelatedWork W2748952813 @default.
- W2105038401 hasRelatedWork W2899084033 @default.
- W2105038401 hasRelatedWork W3031052312 @default.
- W2105038401 hasRelatedWork W3032375762 @default.
- W2105038401 hasRelatedWork W3108674512 @default.
- W2105038401 hasVolume "259" @default.
- W2105038401 isParatext "false" @default.
- W2105038401 isRetracted "false" @default.