Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105103650> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2105103650 endingPage "554" @default.
- W2105103650 startingPage "554" @default.
- W2105103650 abstract "This paper deals theoretically with a problem of hydrodynamic stability characterized by small values of the Reynolds number R. The primary flow whose stability is examined consists of a uniform laminar stream of viscous liquid running down an inclined plane under the action of gravity, being bounded on one side by a free surface influenced by surface tension. The problem thus has a direct bearing on the properties of thin liquid films such as have important uses in chemical engineering.Numerous experiments in the past have shown that in flow down a wall the stream is noticeably agitated by waves except when R is quite small; on a vertical water film, for instance, waves may be observed until R is reduced to some value rather less than 10. The present treatment is accordingly based on methods of approximation suited to fairly low values of R, and thereby avoids the severe mathematical difficulties usual in stability problems at high R. The formulation of the problem resembles that given by Yih (1954); but the method of solution differs from his, and the respective results are in conflict. In particular, there is dis-agreement over the matter of the stability of a strictly vertical stream at very small R. In contrast with the previous conclusions, it is shown here that the flow is always unstable: that is, a class of undamped waves exists for all finite values of R. However, the rates of amplification of unstable waves are shown to become very small when R is made fairly small, and their wavelengths to become very large; this provides a satisfactory explanation for the apparent absence of waves in some experimental observations, and also for the wide scatter among existing estimates of the ‘quasi-critical’ value of R below which waves are undetectable. In view of the controversial nature of these results, emphasis is given to various points of agreement between the present work and the established theory of roll waves; the latter theory gives a clear picture of the physical mechanism of wave formation on gravitational flows, and in its light the results obtained here appear entirely reasonable.The conditions governing neutral stability are worked out to the third order in a parameter which is shown to be small; but a less accurate approximation is then justified as an adequate basis for an easily workable theory providing a ready check with experiment, This theory is used to predict the value of R at which observable waves should first develop on a vertical water film, and also the length and velocity of the waves. These three predictions are compared with the experimental results found by Binnie (1957), and are substantially confirmed." @default.
- W2105103650 created "2016-06-24" @default.
- W2105103650 creator A5014420356 @default.
- W2105103650 date "1957-08-01" @default.
- W2105103650 modified "2023-10-18" @default.
- W2105103650 title "Wave formation in laminar flow down an inclined plane" @default.
- W2105103650 cites W2014776478 @default.
- W2105103650 cites W2020317153 @default.
- W2105103650 cites W2096574888 @default.
- W2105103650 cites W2155587448 @default.
- W2105103650 cites W2275968252 @default.
- W2105103650 doi "https://doi.org/10.1017/s0022112057000373" @default.
- W2105103650 hasPublicationYear "1957" @default.
- W2105103650 type Work @default.
- W2105103650 sameAs 2105103650 @default.
- W2105103650 citedByCount "900" @default.
- W2105103650 countsByYear W21051036502012 @default.
- W2105103650 countsByYear W21051036502013 @default.
- W2105103650 countsByYear W21051036502014 @default.
- W2105103650 countsByYear W21051036502015 @default.
- W2105103650 countsByYear W21051036502016 @default.
- W2105103650 countsByYear W21051036502017 @default.
- W2105103650 countsByYear W21051036502018 @default.
- W2105103650 countsByYear W21051036502019 @default.
- W2105103650 countsByYear W21051036502020 @default.
- W2105103650 countsByYear W21051036502021 @default.
- W2105103650 countsByYear W21051036502022 @default.
- W2105103650 countsByYear W21051036502023 @default.
- W2105103650 crossrefType "journal-article" @default.
- W2105103650 hasAuthorship W2105103650A5014420356 @default.
- W2105103650 hasConcept C111808769 @default.
- W2105103650 hasConcept C121332964 @default.
- W2105103650 hasConcept C17825722 @default.
- W2105103650 hasConcept C192562407 @default.
- W2105103650 hasConcept C196558001 @default.
- W2105103650 hasConcept C2524010 @default.
- W2105103650 hasConcept C33923547 @default.
- W2105103650 hasConcept C38349280 @default.
- W2105103650 hasConcept C57879066 @default.
- W2105103650 hasConcept C62520636 @default.
- W2105103650 hasConcept C76563973 @default.
- W2105103650 hasConcept C77576233 @default.
- W2105103650 hasConcept C77653498 @default.
- W2105103650 hasConceptScore W2105103650C111808769 @default.
- W2105103650 hasConceptScore W2105103650C121332964 @default.
- W2105103650 hasConceptScore W2105103650C17825722 @default.
- W2105103650 hasConceptScore W2105103650C192562407 @default.
- W2105103650 hasConceptScore W2105103650C196558001 @default.
- W2105103650 hasConceptScore W2105103650C2524010 @default.
- W2105103650 hasConceptScore W2105103650C33923547 @default.
- W2105103650 hasConceptScore W2105103650C38349280 @default.
- W2105103650 hasConceptScore W2105103650C57879066 @default.
- W2105103650 hasConceptScore W2105103650C62520636 @default.
- W2105103650 hasConceptScore W2105103650C76563973 @default.
- W2105103650 hasConceptScore W2105103650C77576233 @default.
- W2105103650 hasConceptScore W2105103650C77653498 @default.
- W2105103650 hasIssue "06" @default.
- W2105103650 hasLocation W21051036501 @default.
- W2105103650 hasOpenAccess W2105103650 @default.
- W2105103650 hasPrimaryLocation W21051036501 @default.
- W2105103650 hasRelatedWork W152184001 @default.
- W2105103650 hasRelatedWork W1985156374 @default.
- W2105103650 hasRelatedWork W2021450488 @default.
- W2105103650 hasRelatedWork W2076484914 @default.
- W2105103650 hasRelatedWork W2088622977 @default.
- W2105103650 hasRelatedWork W2334588861 @default.
- W2105103650 hasRelatedWork W2335329689 @default.
- W2105103650 hasRelatedWork W2993203670 @default.
- W2105103650 hasRelatedWork W3109725861 @default.
- W2105103650 hasRelatedWork W4245987430 @default.
- W2105103650 hasVolume "2" @default.
- W2105103650 isParatext "false" @default.
- W2105103650 isRetracted "false" @default.
- W2105103650 magId "2105103650" @default.
- W2105103650 workType "article" @default.