Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105171467> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2105171467 endingPage "693" @default.
- W2105171467 startingPage "665" @default.
- W2105171467 abstract "Evolutionary computation has been successfully applied in a variety of problem domains and applications. In this paper we discuss the use of a specific form of evolutionary computation known as Cultural Algorithms to improve the efficiency of the subsumption algorithm in semantic networks. We identify two complementary methods of using Cultural Algorithms to solve the problem of re-engineering large-scale dynamic semantic networks in order to optimize the efficiency of subsumption: top-down and bottom-up. The top-down re-engineering approach improves subsumption efficiency by reducing the number of attributes that need to be compared for every node without impacting the results. We demonstrate that a Cultural Algorithm approach can be used to identify these defining attributes that are most significant for node retrieval. These results are then utilized within an existing vehicle assembly process planning application that utilizes a semantic network based knowledge base to improve the performance and reduce complexity of the network. It is shown that the results obtained by Cultural Algorithms are at least as good, and in most cases better, than those obtained by the human developers. The advantage of Cultural Algorithms is especially pronounced for those classes in the network that are more complex. The goal of bottom-up approach is to classify the input concepts into new clusters that are most efficient for subsumption and classification. While the resultant subsumption efficiency for the bottom-up approach exceeds that for the top-down approach, it does so by removing structural relationships that made the network understandable to human observers. Like a Rete network in expert systems, it is a compilation of only those relationships that impact subsumption. A direct comparison of the two approaches shows that bottom-up semantic network re-engineering creates a semantic network that is approximately 5 times more efficient than the top-down approach in terms of the cost of subsumption. In conclusion, we will discuss these results and show that some knowledge that is useful to the system users is lost during the bottom-up re-engineering process and that the best approach for re-engineering a semantic network requires a combination of both of these approaches." @default.
- W2105171467 created "2016-06-24" @default.
- W2105171467 creator A5009700238 @default.
- W2105171467 creator A5084993547 @default.
- W2105171467 date "2005-08-01" @default.
- W2105171467 modified "2023-10-17" @default.
- W2105171467 title "USING CULTURAL ALGORITHMS TO RE-ENGINEER LARGE-SCALE SEMANTIC NETWORKS" @default.
- W2105171467 cites W1594324467 @default.
- W2105171467 cites W1616151740 @default.
- W2105171467 cites W2142454841 @default.
- W2105171467 cites W2148986717 @default.
- W2105171467 cites W2579555219 @default.
- W2105171467 cites W4245349101 @default.
- W2105171467 cites W59128197 @default.
- W2105171467 doi "https://doi.org/10.1142/s0218194005002506" @default.
- W2105171467 hasPublicationYear "2005" @default.
- W2105171467 type Work @default.
- W2105171467 sameAs 2105171467 @default.
- W2105171467 citedByCount "8" @default.
- W2105171467 countsByYear W21051714672013 @default.
- W2105171467 countsByYear W21051714672014 @default.
- W2105171467 countsByYear W21051714672015 @default.
- W2105171467 countsByYear W21051714672016 @default.
- W2105171467 countsByYear W21051714672021 @default.
- W2105171467 countsByYear W21051714672022 @default.
- W2105171467 crossrefType "journal-article" @default.
- W2105171467 hasAuthorship W2105171467A5009700238 @default.
- W2105171467 hasAuthorship W2105171467A5084993547 @default.
- W2105171467 hasConcept C105902424 @default.
- W2105171467 hasConcept C111919701 @default.
- W2105171467 hasConcept C11413529 @default.
- W2105171467 hasConcept C119857082 @default.
- W2105171467 hasConcept C121332964 @default.
- W2105171467 hasConcept C124101348 @default.
- W2105171467 hasConcept C127413603 @default.
- W2105171467 hasConcept C154945302 @default.
- W2105171467 hasConcept C2778755073 @default.
- W2105171467 hasConcept C41008148 @default.
- W2105171467 hasConcept C45374587 @default.
- W2105171467 hasConcept C62520636 @default.
- W2105171467 hasConcept C62611344 @default.
- W2105171467 hasConcept C66938386 @default.
- W2105171467 hasConcept C80444323 @default.
- W2105171467 hasConcept C85407183 @default.
- W2105171467 hasConcept C98045186 @default.
- W2105171467 hasConceptScore W2105171467C105902424 @default.
- W2105171467 hasConceptScore W2105171467C111919701 @default.
- W2105171467 hasConceptScore W2105171467C11413529 @default.
- W2105171467 hasConceptScore W2105171467C119857082 @default.
- W2105171467 hasConceptScore W2105171467C121332964 @default.
- W2105171467 hasConceptScore W2105171467C124101348 @default.
- W2105171467 hasConceptScore W2105171467C127413603 @default.
- W2105171467 hasConceptScore W2105171467C154945302 @default.
- W2105171467 hasConceptScore W2105171467C2778755073 @default.
- W2105171467 hasConceptScore W2105171467C41008148 @default.
- W2105171467 hasConceptScore W2105171467C45374587 @default.
- W2105171467 hasConceptScore W2105171467C62520636 @default.
- W2105171467 hasConceptScore W2105171467C62611344 @default.
- W2105171467 hasConceptScore W2105171467C66938386 @default.
- W2105171467 hasConceptScore W2105171467C80444323 @default.
- W2105171467 hasConceptScore W2105171467C85407183 @default.
- W2105171467 hasConceptScore W2105171467C98045186 @default.
- W2105171467 hasIssue "04" @default.
- W2105171467 hasLocation W21051714671 @default.
- W2105171467 hasOpenAccess W2105171467 @default.
- W2105171467 hasPrimaryLocation W21051714671 @default.
- W2105171467 hasRelatedWork W2128879477 @default.
- W2105171467 hasRelatedWork W2145339419 @default.
- W2105171467 hasRelatedWork W2354062721 @default.
- W2105171467 hasRelatedWork W2366615277 @default.
- W2105171467 hasRelatedWork W2961085424 @default.
- W2105171467 hasRelatedWork W4229568052 @default.
- W2105171467 hasRelatedWork W4235367588 @default.
- W2105171467 hasRelatedWork W4237634094 @default.
- W2105171467 hasRelatedWork W4247102092 @default.
- W2105171467 hasRelatedWork W4306674287 @default.
- W2105171467 hasVolume "15" @default.
- W2105171467 isParatext "false" @default.
- W2105171467 isRetracted "false" @default.
- W2105171467 magId "2105171467" @default.
- W2105171467 workType "article" @default.