Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105172633> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2105172633 abstract "Manifold learning algorithms have been recently reported superior to classical dimensionality reduction techniques, such as PCA or MDS, in their ability to discover a more meaningful low-dimensional embedding of the high-dimensional samples. However, most of them encounter the problem of extension to novel samples. In this paper, we propose a regression model to extend three well-known manifold learning algorithms, i.e. Isomap, LLE, and Laplacian Eigenmap to novel samples by neural networks. We first examine these algorithms, and then show that the nonlinear dimensionality reduction ability can be acquired by neural networks, thus the extension problem is easily addressed. This model is very flexible and still preserves the nonlinear nature of the manifold leaning algorithms. Experimental results of data visualization and classification are reported, which validate the feasibility of the proposed model." @default.
- W2105172633 created "2016-06-24" @default.
- W2105172633 creator A5032520189 @default.
- W2105172633 creator A5090730101 @default.
- W2105172633 date "2006-01-01" @default.
- W2105172633 modified "2023-09-25" @default.
- W2105172633 title "Extending Manifold Leaning Algorithms by Neural Networks" @default.
- W2105172633 cites W1510147702 @default.
- W2105172633 cites W1578099820 @default.
- W2105172633 cites W1578196132 @default.
- W2105172633 cites W2001141328 @default.
- W2105172633 cites W2004702574 @default.
- W2105172633 cites W2053186076 @default.
- W2105172633 cites W2054271410 @default.
- W2105172633 cites W2063532964 @default.
- W2105172633 cites W2089474073 @default.
- W2105172633 cites W2103900566 @default.
- W2105172633 cites W2117553576 @default.
- W2105172633 cites W2129795301 @default.
- W2105172633 cites W2153934661 @default.
- W2105172633 cites W2154872931 @default.
- W2105172633 cites W2156718197 @default.
- W2105172633 cites W2169507824 @default.
- W2105172633 doi "https://doi.org/10.1109/ijcnn.2006.246849" @default.
- W2105172633 hasPublicationYear "2006" @default.
- W2105172633 type Work @default.
- W2105172633 sameAs 2105172633 @default.
- W2105172633 citedByCount "1" @default.
- W2105172633 crossrefType "proceedings-article" @default.
- W2105172633 hasAuthorship W2105172633A5032520189 @default.
- W2105172633 hasAuthorship W2105172633A5090730101 @default.
- W2105172633 hasConcept C111030470 @default.
- W2105172633 hasConcept C11413529 @default.
- W2105172633 hasConcept C119857082 @default.
- W2105172633 hasConcept C121332964 @default.
- W2105172633 hasConcept C127413603 @default.
- W2105172633 hasConcept C151876577 @default.
- W2105172633 hasConcept C153120616 @default.
- W2105172633 hasConcept C153180895 @default.
- W2105172633 hasConcept C154945302 @default.
- W2105172633 hasConcept C158622935 @default.
- W2105172633 hasConcept C199360897 @default.
- W2105172633 hasConcept C2778029271 @default.
- W2105172633 hasConcept C2778626561 @default.
- W2105172633 hasConcept C41008148 @default.
- W2105172633 hasConcept C41608201 @default.
- W2105172633 hasConcept C50644808 @default.
- W2105172633 hasConcept C529865628 @default.
- W2105172633 hasConcept C62520636 @default.
- W2105172633 hasConcept C70518039 @default.
- W2105172633 hasConcept C78519656 @default.
- W2105172633 hasConceptScore W2105172633C111030470 @default.
- W2105172633 hasConceptScore W2105172633C11413529 @default.
- W2105172633 hasConceptScore W2105172633C119857082 @default.
- W2105172633 hasConceptScore W2105172633C121332964 @default.
- W2105172633 hasConceptScore W2105172633C127413603 @default.
- W2105172633 hasConceptScore W2105172633C151876577 @default.
- W2105172633 hasConceptScore W2105172633C153120616 @default.
- W2105172633 hasConceptScore W2105172633C153180895 @default.
- W2105172633 hasConceptScore W2105172633C154945302 @default.
- W2105172633 hasConceptScore W2105172633C158622935 @default.
- W2105172633 hasConceptScore W2105172633C199360897 @default.
- W2105172633 hasConceptScore W2105172633C2778029271 @default.
- W2105172633 hasConceptScore W2105172633C2778626561 @default.
- W2105172633 hasConceptScore W2105172633C41008148 @default.
- W2105172633 hasConceptScore W2105172633C41608201 @default.
- W2105172633 hasConceptScore W2105172633C50644808 @default.
- W2105172633 hasConceptScore W2105172633C529865628 @default.
- W2105172633 hasConceptScore W2105172633C62520636 @default.
- W2105172633 hasConceptScore W2105172633C70518039 @default.
- W2105172633 hasConceptScore W2105172633C78519656 @default.
- W2105172633 hasLocation W21051726331 @default.
- W2105172633 hasOpenAccess W2105172633 @default.
- W2105172633 hasPrimaryLocation W21051726331 @default.
- W2105172633 hasRelatedWork W2057623054 @default.
- W2105172633 hasRelatedWork W2371447506 @default.
- W2105172633 hasRelatedWork W2380313759 @default.
- W2105172633 hasRelatedWork W2386387936 @default.
- W2105172633 hasRelatedWork W2386767533 @default.
- W2105172633 hasRelatedWork W2392110728 @default.
- W2105172633 hasRelatedWork W2748952813 @default.
- W2105172633 hasRelatedWork W3107474891 @default.
- W2105172633 hasRelatedWork W1629725936 @default.
- W2105172633 hasRelatedWork W2802349271 @default.
- W2105172633 isParatext "false" @default.
- W2105172633 isRetracted "false" @default.
- W2105172633 magId "2105172633" @default.
- W2105172633 workType "article" @default.