Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105174912> ?p ?o ?g. }
- W2105174912 endingPage "1654" @default.
- W2105174912 startingPage "1651" @default.
- W2105174912 abstract "The cyanobacteria constitute a kingdom of the domain Bacteria (44) whose members manifest a rich diversity of habitats and metabolisms. Species differ with respect to possession of a panoply of specializations, a sampling of which includes diazotrophy, filamentous growth form, production of buoyancy organelles, and differentiation of specialized cell types (5, 47). However, the group can be defined by the unifying property of chlorophyll a-based, oxygenic photosynthesis (57). This uniquely cyanobacterial photoautotrophism is the source of the Earth’s oxidizing atmosphere (51) and extends to plants, whose chloroplasts trace their ancestry to this kingdom (44, 57). Given the central role of photosynthesis in the metabolism of cyanobacteria, it is not surprising that the light environment directly regulates expression of genes that encode key components of the photosynthetic apparatus. The two structures whose light-responsive regulation has been best studied are the photosystem II (PSII) complex itself and its closely associated light-harvesting antenna, the phycobilisome. Genes that encode components of both complexes are likely to be under the control of wavelength-specific photoreceptors that initiate light-responsive signal transduction pathways. Regulation of genes encoding the PSII reaction center proteins. At the heart of the PSII reaction center is a dimer of two structurally related proteins designated D1 and D2, each of which contributes ligands to the cofactors that mediate primary photochemistry (1). The genes that encode these two proteins, psbA and psbD, are conserved in plants, where they reside as single genes in the chloroplast genome. In contrast, cyanobacteria have one (25) to four psbA genes and two psbD genes (21). The regulation of the psbA and psbD genes is best understood for Synechococcus sp. strain PCC 7942, a unicellular cyanobacterium which has three psbA genes that encode two distinct forms of the D1 protein. The three genes are regulated differentially in response to changes in light intensity. In the laboratory, this is demonstrated by a lowto high-light shift equivalent to the increase in light intensity that a cell in shallow water might experience when a cloud moves away from blocking the sun. At low light, greater than 80% of the psbA transcripts are from psbAI, and the only D1 protein detectable in the thylakoid membrane is form I, the product of this gene (13, 32). Immediately upon a shift to high light, the psbAII and psbAIII genes are induced, and the psbAI message is actively degraded (34). After 30 min of exposure, the psbAII message makes up 80% of the psbA transcript population, and the identical products of this message and that of psbAIII, collectively known as form II, are substituted for form I in the thylakoid (13, 32). Several lines of evidence suggest that the two forms of D1 are functionally distinct and that form II provides a selective advantage at high light (12, 13, 32, 33). The D2 polypeptide is encoded by a two-member psbD family, one gene of which is subject to regulation by light (6). The dicistronic psbDI-psbC operon encodes D2 and CP43, a chlorophyll a-binding protein of PSII. It is expressed with little variation at all light intensities. The monocistronic psbDII gene is expressed at very low levels when cells are at low light intensity but is rapidly induced when the light intensity increases. Because the two psbD genes encode identical polypeptides, light-responsive psbD expression causes quantitative changes in D2 production rather than a qualitative interchange like that of the two forms of D1. The regulatory events seem to be important for physiology: growth of a mutant which lacks an active psbDII gene is impaired at high light, and its thylakoids sampled at high light show a deficiency in D2 (6). Intensity (photon flux density) and spectral quality are interdependent characteristics of light which are not completely separable. Although light-responsive expression of the psbA and psbD genes has been studied during shifts in intensity of white light, recent experiments revealed that the characteristic lowto high-light shift responses are induced by low-fluence blue light (56). Like the phenomena associated with complementary chromatic adaptation (CCA) described below, this appears to be a chromatically reversible response, with red light canceling an inductive blue signal. Therefore, subtle shifts in the blue/red ratio may provide information about changes in the light environment that are linked to light intensity. The physiology of PSII suggests that intensity may be the important parameter, even if the photoreception system is set up to work through light quality. The rate of photosynthetic electron transport is proportional to light intensity up to a point, but plants and cyanobacteria enter a state known as photoinhibition under very high light intensity or under other conditions in which light intensity exceeds the capacity of the cell to transport electrons (such as limitations in CO2 or specific ions) (46, 59). The prevailing model for the source of photoinhibition is that the D1 polypeptide is specifically damaged during photochemistry and that it must be cleaved, removed from the PSII complex, and replaced to maintain photosynthetic electron transport. When the rate of damage exceeds that of synthesis of new D1 subunits, photoinhibition results (42, 43, 52, 58). The changes in psbA and psbD expression and in PSII protein synthesis and turnover match well with predictions based on a need for increased synthesis of the reaction center subunits at high light (6, 31, 32). It is not yet clear whether the blue/red and low/high-light responses of the psbA family in Synechococcus sp. result from the same, independent, or overlapping sensory pathways (56). Unusual cis elements in the untranslated leader regions of the psbA genes. A series of facts suggested that transcriptional regulation accounts for the rapid increases in Synechococcus sp. psbAII and psbAIII messages at high light (7). For example, * Phone: (409) 845-9824. Fax: (409) 845-2891. Electronic mail address: SGOLDEN@tamu.edu." @default.
- W2105174912 created "2016-06-24" @default.
- W2105174912 creator A5078162121 @default.
- W2105174912 date "1995-04-01" @default.
- W2105174912 modified "2023-10-07" @default.
- W2105174912 title "Light-responsive gene expression in cyanobacteria" @default.
- W2105174912 cites W1496817660 @default.
- W2105174912 cites W1503041385 @default.
- W2105174912 cites W1505319357 @default.
- W2105174912 cites W1512138230 @default.
- W2105174912 cites W1524026580 @default.
- W2105174912 cites W1524978332 @default.
- W2105174912 cites W1545102559 @default.
- W2105174912 cites W1590463192 @default.
- W2105174912 cites W1605347097 @default.
- W2105174912 cites W1605584576 @default.
- W2105174912 cites W1801849869 @default.
- W2105174912 cites W1877148761 @default.
- W2105174912 cites W1917597875 @default.
- W2105174912 cites W1948719596 @default.
- W2105174912 cites W1962165774 @default.
- W2105174912 cites W1963684521 @default.
- W2105174912 cites W1965310228 @default.
- W2105174912 cites W1975463421 @default.
- W2105174912 cites W1975945912 @default.
- W2105174912 cites W1983235655 @default.
- W2105174912 cites W1983756227 @default.
- W2105174912 cites W1987214947 @default.
- W2105174912 cites W1988656360 @default.
- W2105174912 cites W2000969873 @default.
- W2105174912 cites W2013529618 @default.
- W2105174912 cites W2014431045 @default.
- W2105174912 cites W2015322739 @default.
- W2105174912 cites W2028060367 @default.
- W2105174912 cites W2031634040 @default.
- W2105174912 cites W2039126770 @default.
- W2105174912 cites W2039964083 @default.
- W2105174912 cites W2041010281 @default.
- W2105174912 cites W2041907482 @default.
- W2105174912 cites W2054840015 @default.
- W2105174912 cites W2055395066 @default.
- W2105174912 cites W2062209931 @default.
- W2105174912 cites W2072094007 @default.
- W2105174912 cites W2075723303 @default.
- W2105174912 cites W2075858471 @default.
- W2105174912 cites W2079366471 @default.
- W2105174912 cites W2089597079 @default.
- W2105174912 cites W2093861840 @default.
- W2105174912 cites W2094143922 @default.
- W2105174912 cites W2104454769 @default.
- W2105174912 cites W2115492173 @default.
- W2105174912 cites W2125415458 @default.
- W2105174912 cites W2160407398 @default.
- W2105174912 cites W2161974480 @default.
- W2105174912 cites W2163334125 @default.
- W2105174912 cites W2167789283 @default.
- W2105174912 cites W236354049 @default.
- W2105174912 cites W348649083 @default.
- W2105174912 cites W4211022623 @default.
- W2105174912 cites W4239661344 @default.
- W2105174912 cites W4255488446 @default.
- W2105174912 cites W4366064208 @default.
- W2105174912 cites W59427252 @default.
- W2105174912 doi "https://doi.org/10.1128/jb.177.7.1651-1654.1995" @default.
- W2105174912 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/176789" @default.
- W2105174912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7896684" @default.
- W2105174912 hasPublicationYear "1995" @default.
- W2105174912 type Work @default.
- W2105174912 sameAs 2105174912 @default.
- W2105174912 citedByCount "120" @default.
- W2105174912 countsByYear W21051749122012 @default.
- W2105174912 countsByYear W21051749122013 @default.
- W2105174912 countsByYear W21051749122014 @default.
- W2105174912 countsByYear W21051749122015 @default.
- W2105174912 countsByYear W21051749122016 @default.
- W2105174912 countsByYear W21051749122017 @default.
- W2105174912 countsByYear W21051749122018 @default.
- W2105174912 countsByYear W21051749122019 @default.
- W2105174912 countsByYear W21051749122020 @default.
- W2105174912 countsByYear W21051749122021 @default.
- W2105174912 countsByYear W21051749122022 @default.
- W2105174912 crossrefType "journal-article" @default.
- W2105174912 hasAuthorship W2105174912A5078162121 @default.
- W2105174912 hasBestOaLocation W21051749121 @default.
- W2105174912 hasConcept C104317684 @default.
- W2105174912 hasConcept C150194340 @default.
- W2105174912 hasConcept C153911025 @default.
- W2105174912 hasConcept C165864922 @default.
- W2105174912 hasConcept C2779669040 @default.
- W2105174912 hasConcept C523546767 @default.
- W2105174912 hasConcept C54355233 @default.
- W2105174912 hasConcept C86803240 @default.
- W2105174912 hasConcept C95444343 @default.
- W2105174912 hasConceptScore W2105174912C104317684 @default.
- W2105174912 hasConceptScore W2105174912C150194340 @default.
- W2105174912 hasConceptScore W2105174912C153911025 @default.
- W2105174912 hasConceptScore W2105174912C165864922 @default.
- W2105174912 hasConceptScore W2105174912C2779669040 @default.