Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105201214> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2105201214 endingPage "1133" @default.
- W2105201214 startingPage "1127" @default.
- W2105201214 abstract "intimately connected with duality theory (the notation is that of [1]). In both cases the middle algebra is the closure of L(G) in the dual of the first algebra and also the predual of the third algebra (at least when G is amenable in the second case). Furthermore, the third algebra is closely connected with the multiplier algebra of the first algebra. For abelian groups, compact or discrete, Varopoulos [11], [12] showed to great effect how the second triple could be obtained and studied by starting with the tensor product ^0(G) (8)y^0(^)» 7 the greatest crossnorm. An analogous construction starting this time with^0(G ) ®x te0(G)9 A the least cross-norm, would produce the first triple. On the other hand, at least for amenable groups, the triples in (1) can be considered as the extreme case/?=1, 2, respectively, of a family {A(G), cv{G), B(G)}, 1 ^ / ? ^ 2 , associated with /^-convolution operator theory, and obtained by starting with the tensor product L'(G) <g)y L (G),pj±, or<g0(G) ®y LG), p=. Indeed, Herz has shown that A{G) is a pointwise Banach algebra [6] while B(G), l < p ^ 2 , is both the multiplier algebra of A{G) and the Banach dual space of cv(G), G amenable. In these notes we outline a new approach to convolution operator theory, by starting with ^^G) ®a ^0(G)9 a a tensorial norm [5], rather than with L'{G) ®y L (G). A triple { f (G), &'(G), #(<7)} analogous to (1) is obtained. For //-convolution operator theory, a family of tensorial norms CLVQ is used. The two basic ideas are to exploit classical Banach space theory concerning L(iu)spaces, for example, forgetting about group structure, and then, when a group structure is imposed, to exploit standard ^ 0 ( ^ ) a n d L(G)-techniques because all the 'L^-theory' has been thrown into the norm aM," @default.
- W2105201214 created "2016-06-24" @default.
- W2105201214 creator A5046036846 @default.
- W2105201214 date "1974-11-01" @default.
- W2105201214 modified "2023-10-18" @default.
- W2105201214 title "$L^p$-convolution operators and tensor products of Banach spaces" @default.
- W2105201214 cites W1952838520 @default.
- W2105201214 cites W1972352918 @default.
- W2105201214 cites W2057047872 @default.
- W2105201214 cites W2092508526 @default.
- W2105201214 cites W2109339080 @default.
- W2105201214 cites W2125199983 @default.
- W2105201214 cites W3038830718 @default.
- W2105201214 doi "https://doi.org/10.1090/s0002-9904-1974-13642-6" @default.
- W2105201214 hasPublicationYear "1974" @default.
- W2105201214 type Work @default.
- W2105201214 sameAs 2105201214 @default.
- W2105201214 citedByCount "11" @default.
- W2105201214 countsByYear W21052012142018 @default.
- W2105201214 countsByYear W21052012142019 @default.
- W2105201214 countsByYear W21052012142020 @default.
- W2105201214 crossrefType "journal-article" @default.
- W2105201214 hasAuthorship W2105201214A5046036846 @default.
- W2105201214 hasBestOaLocation W21052012142 @default.
- W2105201214 hasConcept C132954091 @default.
- W2105201214 hasConcept C154945302 @default.
- W2105201214 hasConcept C155281189 @default.
- W2105201214 hasConcept C202444582 @default.
- W2105201214 hasConcept C33923547 @default.
- W2105201214 hasConcept C41008148 @default.
- W2105201214 hasConcept C45347329 @default.
- W2105201214 hasConcept C50644808 @default.
- W2105201214 hasConcept C51255310 @default.
- W2105201214 hasConceptScore W2105201214C132954091 @default.
- W2105201214 hasConceptScore W2105201214C154945302 @default.
- W2105201214 hasConceptScore W2105201214C155281189 @default.
- W2105201214 hasConceptScore W2105201214C202444582 @default.
- W2105201214 hasConceptScore W2105201214C33923547 @default.
- W2105201214 hasConceptScore W2105201214C41008148 @default.
- W2105201214 hasConceptScore W2105201214C45347329 @default.
- W2105201214 hasConceptScore W2105201214C50644808 @default.
- W2105201214 hasConceptScore W2105201214C51255310 @default.
- W2105201214 hasIssue "6" @default.
- W2105201214 hasLocation W21052012141 @default.
- W2105201214 hasLocation W21052012142 @default.
- W2105201214 hasOpenAccess W2105201214 @default.
- W2105201214 hasPrimaryLocation W21052012141 @default.
- W2105201214 hasRelatedWork W1639097251 @default.
- W2105201214 hasRelatedWork W2005269432 @default.
- W2105201214 hasRelatedWork W2045063116 @default.
- W2105201214 hasRelatedWork W2076019018 @default.
- W2105201214 hasRelatedWork W2138228230 @default.
- W2105201214 hasRelatedWork W2919525303 @default.
- W2105201214 hasRelatedWork W2950705453 @default.
- W2105201214 hasRelatedWork W2953257350 @default.
- W2105201214 hasRelatedWork W4298438138 @default.
- W2105201214 hasRelatedWork W65148844 @default.
- W2105201214 hasVolume "80" @default.
- W2105201214 isParatext "false" @default.
- W2105201214 isRetracted "false" @default.
- W2105201214 magId "2105201214" @default.
- W2105201214 workType "article" @default.