Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105201700> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2105201700 endingPage "24" @default.
- W2105201700 startingPage "1" @default.
- W2105201700 abstract "Executive SummaryMany believe that “big data” will transform business, government, and other aspects of the economy. In this article we discuss how new data may impact economic policy and economic research. Large-scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe economic activity. They can also enable novel research designs that allow researchers to trace the consequences of different events or policies. We outline some of the challenges in accessing and making use of these data. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in economics." @default.
- W2105201700 created "2016-06-24" @default.
- W2105201700 creator A5036746220 @default.
- W2105201700 creator A5069334537 @default.
- W2105201700 date "2014-01-01" @default.
- W2105201700 modified "2023-10-14" @default.
- W2105201700 title "The Data Revolution and Economic Analysis" @default.
- W2105201700 cites W2014906121 @default.
- W2105201700 cites W2026249426 @default.
- W2105201700 cites W2076891766 @default.
- W2105201700 cites W2107741948 @default.
- W2105201700 cites W2137604927 @default.
- W2105201700 cites W2145489624 @default.
- W2105201700 cites W2147634746 @default.
- W2105201700 cites W2148501506 @default.
- W2105201700 cites W2163162137 @default.
- W2105201700 cites W2256120588 @default.
- W2105201700 cites W2323881768 @default.
- W2105201700 cites W3123915401 @default.
- W2105201700 doi "https://doi.org/10.1086/674019" @default.
- W2105201700 hasPublicationYear "2014" @default.
- W2105201700 type Work @default.
- W2105201700 sameAs 2105201700 @default.
- W2105201700 citedByCount "135" @default.
- W2105201700 countsByYear W21052017002013 @default.
- W2105201700 countsByYear W21052017002014 @default.
- W2105201700 countsByYear W21052017002015 @default.
- W2105201700 countsByYear W21052017002016 @default.
- W2105201700 countsByYear W21052017002017 @default.
- W2105201700 countsByYear W21052017002018 @default.
- W2105201700 countsByYear W21052017002019 @default.
- W2105201700 countsByYear W21052017002020 @default.
- W2105201700 countsByYear W21052017002021 @default.
- W2105201700 countsByYear W21052017002022 @default.
- W2105201700 countsByYear W21052017002023 @default.
- W2105201700 crossrefType "journal-article" @default.
- W2105201700 hasAuthorship W2105201700A5036746220 @default.
- W2105201700 hasAuthorship W2105201700A5069334537 @default.
- W2105201700 hasConcept C144133560 @default.
- W2105201700 hasConcept C162324750 @default.
- W2105201700 hasConcept C2522767166 @default.
- W2105201700 hasConcept C41008148 @default.
- W2105201700 hasConceptScore W2105201700C144133560 @default.
- W2105201700 hasConceptScore W2105201700C162324750 @default.
- W2105201700 hasConceptScore W2105201700C2522767166 @default.
- W2105201700 hasConceptScore W2105201700C41008148 @default.
- W2105201700 hasLocation W21052017001 @default.
- W2105201700 hasOpenAccess W2105201700 @default.
- W2105201700 hasPrimaryLocation W21052017001 @default.
- W2105201700 hasRelatedWork W1502198272 @default.
- W2105201700 hasRelatedWork W1986173648 @default.
- W2105201700 hasRelatedWork W1998718379 @default.
- W2105201700 hasRelatedWork W2006758266 @default.
- W2105201700 hasRelatedWork W2017540542 @default.
- W2105201700 hasRelatedWork W2061514737 @default.
- W2105201700 hasRelatedWork W2066504725 @default.
- W2105201700 hasRelatedWork W2073254488 @default.
- W2105201700 hasRelatedWork W2084227502 @default.
- W2105201700 hasRelatedWork W2899084033 @default.
- W2105201700 hasVolume "14" @default.
- W2105201700 isParatext "false" @default.
- W2105201700 isRetracted "false" @default.
- W2105201700 magId "2105201700" @default.
- W2105201700 workType "article" @default.