Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105304725> ?p ?o ?g. }
- W2105304725 endingPage "3790" @default.
- W2105304725 startingPage "3784" @default.
- W2105304725 abstract "This paper describes a new algorithm with neuron-by-neuron computation methods for the gradient vector and the Jacobian matrix. The algorithm can handle networks with arbitrarily connected neurons. The training speed is comparable with the Levenberg-Marquardt algorithm, which is currently considered by many as the fastest algorithm for neural network training. More importantly, it is shown that the computation of the Jacobian, which is required for second-order algorithms, has a similar computation complexity as the computation of the gradient for first-order learning methods. This new algorithm is implemented in the newly developed software, Neural Network Trainer, which has unique capabilities of handling arbitrarily connected networks. These networks with connections across layers can be more efficient than commonly used multilayer perceptron networks." @default.
- W2105304725 created "2016-06-24" @default.
- W2105304725 creator A5052669741 @default.
- W2105304725 creator A5066257732 @default.
- W2105304725 creator A5075697807 @default.
- W2105304725 creator A5084622054 @default.
- W2105304725 date "2008-10-01" @default.
- W2105304725 modified "2023-09-25" @default.
- W2105304725 title "Computing Gradient Vector and Jacobian Matrix in Arbitrarily Connected Neural Networks" @default.
- W2105304725 cites W1498436455 @default.
- W2105304725 cites W1586313164 @default.
- W2105304725 cites W2002410308 @default.
- W2105304725 cites W2034868535 @default.
- W2105304725 cites W2096538674 @default.
- W2105304725 cites W2109007948 @default.
- W2105304725 cites W2112312998 @default.
- W2105304725 cites W2120533977 @default.
- W2105304725 cites W2126482285 @default.
- W2105304725 cites W2139823479 @default.
- W2105304725 cites W2143839036 @default.
- W2105304725 cites W2146348045 @default.
- W2105304725 cites W2147137378 @default.
- W2105304725 cites W2147830786 @default.
- W2105304725 cites W2154088208 @default.
- W2105304725 cites W2154720269 @default.
- W2105304725 cites W2155482699 @default.
- W2105304725 cites W2161405527 @default.
- W2105304725 cites W2164195216 @default.
- W2105304725 cites W2166908602 @default.
- W2105304725 cites W2167175022 @default.
- W2105304725 cites W2171246108 @default.
- W2105304725 cites W2176760140 @default.
- W2105304725 cites W2533184371 @default.
- W2105304725 cites W2544927610 @default.
- W2105304725 cites W4239795001 @default.
- W2105304725 cites W4248433037 @default.
- W2105304725 cites W2017806475 @default.
- W2105304725 doi "https://doi.org/10.1109/tie.2008.2003319" @default.
- W2105304725 hasPublicationYear "2008" @default.
- W2105304725 type Work @default.
- W2105304725 sameAs 2105304725 @default.
- W2105304725 citedByCount "136" @default.
- W2105304725 countsByYear W21053047252012 @default.
- W2105304725 countsByYear W21053047252013 @default.
- W2105304725 countsByYear W21053047252014 @default.
- W2105304725 countsByYear W21053047252015 @default.
- W2105304725 countsByYear W21053047252016 @default.
- W2105304725 countsByYear W21053047252017 @default.
- W2105304725 countsByYear W21053047252018 @default.
- W2105304725 countsByYear W21053047252019 @default.
- W2105304725 countsByYear W21053047252020 @default.
- W2105304725 countsByYear W21053047252021 @default.
- W2105304725 countsByYear W21053047252022 @default.
- W2105304725 countsByYear W21053047252023 @default.
- W2105304725 crossrefType "journal-article" @default.
- W2105304725 hasAuthorship W2105304725A5052669741 @default.
- W2105304725 hasAuthorship W2105304725A5066257732 @default.
- W2105304725 hasAuthorship W2105304725A5075697807 @default.
- W2105304725 hasAuthorship W2105304725A5084622054 @default.
- W2105304725 hasConcept C106487976 @default.
- W2105304725 hasConcept C11413529 @default.
- W2105304725 hasConcept C154945302 @default.
- W2105304725 hasConcept C159985019 @default.
- W2105304725 hasConcept C179717631 @default.
- W2105304725 hasConcept C192562407 @default.
- W2105304725 hasConcept C200331156 @default.
- W2105304725 hasConcept C28826006 @default.
- W2105304725 hasConcept C33923547 @default.
- W2105304725 hasConcept C41008148 @default.
- W2105304725 hasConcept C45374587 @default.
- W2105304725 hasConcept C50644808 @default.
- W2105304725 hasConceptScore W2105304725C106487976 @default.
- W2105304725 hasConceptScore W2105304725C11413529 @default.
- W2105304725 hasConceptScore W2105304725C154945302 @default.
- W2105304725 hasConceptScore W2105304725C159985019 @default.
- W2105304725 hasConceptScore W2105304725C179717631 @default.
- W2105304725 hasConceptScore W2105304725C192562407 @default.
- W2105304725 hasConceptScore W2105304725C200331156 @default.
- W2105304725 hasConceptScore W2105304725C28826006 @default.
- W2105304725 hasConceptScore W2105304725C33923547 @default.
- W2105304725 hasConceptScore W2105304725C41008148 @default.
- W2105304725 hasConceptScore W2105304725C45374587 @default.
- W2105304725 hasConceptScore W2105304725C50644808 @default.
- W2105304725 hasIssue "10" @default.
- W2105304725 hasLocation W21053047251 @default.
- W2105304725 hasOpenAccess W2105304725 @default.
- W2105304725 hasPrimaryLocation W21053047251 @default.
- W2105304725 hasRelatedWork W2042130923 @default.
- W2105304725 hasRelatedWork W2084254065 @default.
- W2105304725 hasRelatedWork W2105730801 @default.
- W2105304725 hasRelatedWork W2354062721 @default.
- W2105304725 hasRelatedWork W2386387936 @default.
- W2105304725 hasRelatedWork W2396307289 @default.
- W2105304725 hasRelatedWork W274904744 @default.
- W2105304725 hasRelatedWork W2978316641 @default.
- W2105304725 hasRelatedWork W3107474891 @default.
- W2105304725 hasRelatedWork W2024261952 @default.
- W2105304725 hasVolume "55" @default.