Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105344564> ?p ?o ?g. }
- W2105344564 endingPage "357" @default.
- W2105344564 startingPage "342" @default.
- W2105344564 abstract "article Accurate remote retrieval of chlorophyll-a (Chl-a) concentrations for inland and coastal turbid waters is a challenging task due to their optical complexity. An adaptive model was developed based on the merits of coupling a genetic algorithm to select spectral variables and partial least squares (GA-PLS) for regression. The objectives of this paper are: (1) to evaluate the GA-PLS model performance using datasets collected from 1140 stations encompassing a wide range of Chl-a and suspended sediment from nine water bodies across Central Indiana (CIN), USA, South Australia (SA), Taihu Lake (THL) in East China and Shitoukoumen Reservoir (STKR) in Northeast China with comparison to a widely accepted three-band model, and (2) to evaluate the GA-PLS spatial transferability with simulated ESA/Sentinel3/OLCI and Hyperion spectra. The GA-PLS and the three-band model yield accurate calibrations (Cal) for the SA dataset with R 2 above 0.98, and the corresponding validation (Val) shows relative root mean squared error (rRMSE) of less than 6.2% with narrow-band spectra. Both the GA-PLS and three-band model show stable performance for the CIN dataset (Cal: R 2 = 0.91 and 0.77; Val: rRMSE = 20.1% and 33.4%), THL dataset (Cal: R 2 = 0.91 and 0.88; Val: rRMSE = 30.1% and 33.7%), and STKR dataset (R 2 = 0.84 and 0.82; rRMSE = 29.1% and 33.2%). The re- sults also reveal that simulated OLCI datasets degrade both the GA-PLS performance, and particularly the per- formance of the three-band model due to the coarser and discontinuous spectral configuration. Contrastingly, both the GA-PLS and the three-band model show improved results with the simulated Hyperion datasets. Our observation indicates that the GA-PLS model outperforms the three-band model in terms of spatial transfer- ability; however, the three-band model has its own merits, considering its simplicity. Further analyses indi- cate that spectral measurement protocols, instrumentations, and inorganic suspended matter affect the GA-PLS and three-band model performances." @default.
- W2105344564 created "2016-06-24" @default.
- W2105344564 creator A5003848639 @default.
- W2105344564 creator A5012148812 @default.
- W2105344564 creator A5024802588 @default.
- W2105344564 creator A5036516611 @default.
- W2105344564 creator A5047927389 @default.
- W2105344564 creator A5050415342 @default.
- W2105344564 creator A5065912071 @default.
- W2105344564 creator A5066400668 @default.
- W2105344564 creator A5070062527 @default.
- W2105344564 creator A5072696463 @default.
- W2105344564 creator A5077607429 @default.
- W2105344564 date "2013-09-01" @default.
- W2105344564 modified "2023-10-17" @default.
- W2105344564 title "Remote estimation of chlorophyll-a in turbid inland waters: Three-band model versus GA-PLS model" @default.
- W2105344564 cites W1976556171 @default.
- W2105344564 cites W1978366487 @default.
- W2105344564 cites W1988911077 @default.
- W2105344564 cites W1990142729 @default.
- W2105344564 cites W1991776426 @default.
- W2105344564 cites W1991872920 @default.
- W2105344564 cites W1992420498 @default.
- W2105344564 cites W1994689062 @default.
- W2105344564 cites W1996547849 @default.
- W2105344564 cites W1999300248 @default.
- W2105344564 cites W1999499567 @default.
- W2105344564 cites W2004311462 @default.
- W2105344564 cites W2009751365 @default.
- W2105344564 cites W2012551283 @default.
- W2105344564 cites W2020972217 @default.
- W2105344564 cites W2026440158 @default.
- W2105344564 cites W2027975676 @default.
- W2105344564 cites W2029924464 @default.
- W2105344564 cites W2037050441 @default.
- W2105344564 cites W2042040410 @default.
- W2105344564 cites W2043728386 @default.
- W2105344564 cites W2043836071 @default.
- W2105344564 cites W2046607312 @default.
- W2105344564 cites W2054972614 @default.
- W2105344564 cites W2059716646 @default.
- W2105344564 cites W2061830556 @default.
- W2105344564 cites W2063012028 @default.
- W2105344564 cites W2064393559 @default.
- W2105344564 cites W2068702613 @default.
- W2105344564 cites W2072549045 @default.
- W2105344564 cites W2076073221 @default.
- W2105344564 cites W2079497324 @default.
- W2105344564 cites W2082714424 @default.
- W2105344564 cites W2086415621 @default.
- W2105344564 cites W2090199194 @default.
- W2105344564 cites W2096018235 @default.
- W2105344564 cites W2100738276 @default.
- W2105344564 cites W2103563654 @default.
- W2105344564 cites W2104487864 @default.
- W2105344564 cites W2108584354 @default.
- W2105344564 cites W2114164280 @default.
- W2105344564 cites W2124119921 @default.
- W2105344564 cites W2128158766 @default.
- W2105344564 cites W2128827633 @default.
- W2105344564 cites W2129932080 @default.
- W2105344564 cites W2130817706 @default.
- W2105344564 cites W2131713496 @default.
- W2105344564 cites W2132388458 @default.
- W2105344564 cites W2137347328 @default.
- W2105344564 cites W2140939548 @default.
- W2105344564 cites W2144029193 @default.
- W2105344564 cites W2147877700 @default.
- W2105344564 cites W2147904324 @default.
- W2105344564 cites W2148068748 @default.
- W2105344564 cites W2154890887 @default.
- W2105344564 cites W2158863190 @default.
- W2105344564 cites W2161708981 @default.
- W2105344564 cites W2168956990 @default.
- W2105344564 cites W2171616486 @default.
- W2105344564 cites W2171858547 @default.
- W2105344564 cites W2172197466 @default.
- W2105344564 doi "https://doi.org/10.1016/j.rse.2013.05.017" @default.
- W2105344564 hasPublicationYear "2013" @default.
- W2105344564 type Work @default.
- W2105344564 sameAs 2105344564 @default.
- W2105344564 citedByCount "76" @default.
- W2105344564 countsByYear W21053445642013 @default.
- W2105344564 countsByYear W21053445642014 @default.
- W2105344564 countsByYear W21053445642015 @default.
- W2105344564 countsByYear W21053445642016 @default.
- W2105344564 countsByYear W21053445642017 @default.
- W2105344564 countsByYear W21053445642018 @default.
- W2105344564 countsByYear W21053445642019 @default.
- W2105344564 countsByYear W21053445642020 @default.
- W2105344564 countsByYear W21053445642021 @default.
- W2105344564 countsByYear W21053445642022 @default.
- W2105344564 countsByYear W21053445642023 @default.
- W2105344564 crossrefType "journal-article" @default.
- W2105344564 hasAuthorship W2105344564A5003848639 @default.
- W2105344564 hasAuthorship W2105344564A5012148812 @default.
- W2105344564 hasAuthorship W2105344564A5024802588 @default.
- W2105344564 hasAuthorship W2105344564A5036516611 @default.