Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105367890> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2105367890 abstract "We prove an algebraic version of the Gauge-Invariant Uniqueness Theorem, a result which gives information about the injectivity of certain homomorphisms between ${mathbb Z}$-graded algebras. As our main application of this theorem, we obtain isomorphisms between the Leavitt path algebras of specified graphs. From these isomorphisms we are able to achieve two ends. First, we show that the $K_0$ groups of various sets of purely infinite simple Leavitt path algebras, together with the position of the identity element in $K_0$, classifies the algebras in these sets up to isomorphism. Second, we show that the isomorphism between matrix rings over the classical Leavitt algebras, established previously using number-theoretic methods, can be reobtained via appropriate isomorphisms between Leavitt path algebras." @default.
- W2105367890 created "2016-06-24" @default.
- W2105367890 creator A5038398051 @default.
- W2105367890 creator A5049588512 @default.
- W2105367890 creator A5058805081 @default.
- W2105367890 creator A5079266224 @default.
- W2105367890 date "2007-06-26" @default.
- W2105367890 modified "2023-09-22" @default.
- W2105367890 title "The classification question for Leavitt path algebras" @default.
- W2105367890 cites W181084271 @default.
- W2105367890 cites W2102280169 @default.
- W2105367890 cites W2157417386 @default.
- W2105367890 cites W2293448812 @default.
- W2105367890 cites W2999792396 @default.
- W2105367890 hasPublicationYear "2007" @default.
- W2105367890 type Work @default.
- W2105367890 sameAs 2105367890 @default.
- W2105367890 citedByCount "2" @default.
- W2105367890 countsByYear W21053678902013 @default.
- W2105367890 countsByYear W21053678902015 @default.
- W2105367890 crossrefType "posted-content" @default.
- W2105367890 hasAuthorship W2105367890A5038398051 @default.
- W2105367890 hasAuthorship W2105367890A5049588512 @default.
- W2105367890 hasAuthorship W2105367890A5058805081 @default.
- W2105367890 hasAuthorship W2105367890A5079266224 @default.
- W2105367890 hasConcept C111472728 @default.
- W2105367890 hasConcept C115624301 @default.
- W2105367890 hasConcept C118615104 @default.
- W2105367890 hasConcept C134306372 @default.
- W2105367890 hasConcept C136119220 @default.
- W2105367890 hasConcept C138885662 @default.
- W2105367890 hasConcept C182419690 @default.
- W2105367890 hasConcept C185592680 @default.
- W2105367890 hasConcept C190470478 @default.
- W2105367890 hasConcept C199360897 @default.
- W2105367890 hasConcept C202444582 @default.
- W2105367890 hasConcept C203436722 @default.
- W2105367890 hasConcept C26231708 @default.
- W2105367890 hasConcept C2777021972 @default.
- W2105367890 hasConcept C2777735758 @default.
- W2105367890 hasConcept C2780586882 @default.
- W2105367890 hasConcept C33923547 @default.
- W2105367890 hasConcept C37914503 @default.
- W2105367890 hasConcept C4042151 @default.
- W2105367890 hasConcept C41008148 @default.
- W2105367890 hasConcept C8010536 @default.
- W2105367890 hasConcept C9376300 @default.
- W2105367890 hasConceptScore W2105367890C111472728 @default.
- W2105367890 hasConceptScore W2105367890C115624301 @default.
- W2105367890 hasConceptScore W2105367890C118615104 @default.
- W2105367890 hasConceptScore W2105367890C134306372 @default.
- W2105367890 hasConceptScore W2105367890C136119220 @default.
- W2105367890 hasConceptScore W2105367890C138885662 @default.
- W2105367890 hasConceptScore W2105367890C182419690 @default.
- W2105367890 hasConceptScore W2105367890C185592680 @default.
- W2105367890 hasConceptScore W2105367890C190470478 @default.
- W2105367890 hasConceptScore W2105367890C199360897 @default.
- W2105367890 hasConceptScore W2105367890C202444582 @default.
- W2105367890 hasConceptScore W2105367890C203436722 @default.
- W2105367890 hasConceptScore W2105367890C26231708 @default.
- W2105367890 hasConceptScore W2105367890C2777021972 @default.
- W2105367890 hasConceptScore W2105367890C2777735758 @default.
- W2105367890 hasConceptScore W2105367890C2780586882 @default.
- W2105367890 hasConceptScore W2105367890C33923547 @default.
- W2105367890 hasConceptScore W2105367890C37914503 @default.
- W2105367890 hasConceptScore W2105367890C4042151 @default.
- W2105367890 hasConceptScore W2105367890C41008148 @default.
- W2105367890 hasConceptScore W2105367890C8010536 @default.
- W2105367890 hasConceptScore W2105367890C9376300 @default.
- W2105367890 hasLocation W21053678901 @default.
- W2105367890 hasOpenAccess W2105367890 @default.
- W2105367890 hasPrimaryLocation W21053678901 @default.
- W2105367890 hasRelatedWork W1937336616 @default.
- W2105367890 hasRelatedWork W1976548884 @default.
- W2105367890 hasRelatedWork W2029614072 @default.
- W2105367890 hasRelatedWork W2048512805 @default.
- W2105367890 hasRelatedWork W2053608397 @default.
- W2105367890 hasRelatedWork W2060956648 @default.
- W2105367890 hasRelatedWork W2200576343 @default.
- W2105367890 hasRelatedWork W2334017127 @default.
- W2105367890 hasRelatedWork W2487040078 @default.
- W2105367890 hasRelatedWork W2492121316 @default.
- W2105367890 hasRelatedWork W2801039595 @default.
- W2105367890 hasRelatedWork W2807700379 @default.
- W2105367890 hasRelatedWork W2916768231 @default.
- W2105367890 hasRelatedWork W2949328110 @default.
- W2105367890 hasRelatedWork W2950348645 @default.
- W2105367890 hasRelatedWork W2950976984 @default.
- W2105367890 hasRelatedWork W2952265981 @default.
- W2105367890 hasRelatedWork W2963891212 @default.
- W2105367890 hasRelatedWork W3180475431 @default.
- W2105367890 hasRelatedWork W3183843343 @default.
- W2105367890 isParatext "false" @default.
- W2105367890 isRetracted "false" @default.
- W2105367890 magId "2105367890" @default.
- W2105367890 workType "article" @default.