Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105373837> ?p ?o ?g. }
- W2105373837 endingPage "164" @default.
- W2105373837 startingPage "146" @default.
- W2105373837 abstract "Stack Generalization is a general method for combining low-level classifiers to achieve high-level classifier for impetrate to higher recognition rate. This paper proposed method based on Stack Generalization that named Modified Stack Generalization. In rour proposed model, unlike the conventional stacked generalization, the combiner receives the output of base classifiers and original input directly. The experiments have been done on 780 samples of 30 city names of Iran that for different experiments different number of training and testing samples was chosen. In the feature extraction Stage Gradient, Zoning methods are used, and also other method base on Gradient is suggested. Results show that Modified Stack generalization method with the recommended feature extraction method has been achieved to 92.21% recognition rate. Furthermore, Comparison test with other combination methods indicates that the proposed method yields improved recognition rate in the Farsi handwritten word recognition." @default.
- W2105373837 created "2016-06-24" @default.
- W2105373837 creator A5062060242 @default.
- W2105373837 creator A5062266427 @default.
- W2105373837 creator A5088750200 @default.
- W2105373837 date "2011-06-30" @default.
- W2105373837 modified "2023-09-26" @default.
- W2105373837 title "Farsi Handwritten Recognition Using Combining Neural Networks Based on Stacked Generalization" @default.
- W2105373837 cites W1497256448 @default.
- W2105373837 cites W1498655523 @default.
- W2105373837 cites W1836551866 @default.
- W2105373837 cites W1862753936 @default.
- W2105373837 cites W192646177 @default.
- W2105373837 cites W1969482724 @default.
- W2105373837 cites W1986275625 @default.
- W2105373837 cites W2016648380 @default.
- W2105373837 cites W2019778169 @default.
- W2105373837 cites W2031614119 @default.
- W2105373837 cites W2077218694 @default.
- W2105373837 cites W2098154993 @default.
- W2105373837 cites W2102734279 @default.
- W2105373837 cites W2106037598 @default.
- W2105373837 cites W2108888071 @default.
- W2105373837 cites W2110129072 @default.
- W2105373837 cites W2118216658 @default.
- W2105373837 cites W2121758955 @default.
- W2105373837 cites W2123037436 @default.
- W2105373837 cites W2124868070 @default.
- W2105373837 cites W2128374258 @default.
- W2105373837 cites W2132971529 @default.
- W2105373837 cites W2135139591 @default.
- W2105373837 cites W2135724004 @default.
- W2105373837 cites W2136454596 @default.
- W2105373837 cites W2139212933 @default.
- W2105373837 cites W2142964353 @default.
- W2105373837 cites W2146127732 @default.
- W2105373837 cites W2150855341 @default.
- W2105373837 cites W2150884987 @default.
- W2105373837 cites W2152195021 @default.
- W2105373837 cites W2155806188 @default.
- W2105373837 cites W2157236054 @default.
- W2105373837 cites W2158275940 @default.
- W2105373837 cites W2164568552 @default.
- W2105373837 cites W2169754998 @default.
- W2105373837 cites W2170487914 @default.
- W2105373837 cites W2170520710 @default.
- W2105373837 cites W2171818721 @default.
- W2105373837 cites W2183766752 @default.
- W2105373837 cites W2217896605 @default.
- W2105373837 cites W2402846924 @default.
- W2105373837 cites W2548086059 @default.
- W2105373837 cites W2777539278 @default.
- W2105373837 cites W3042658839 @default.
- W2105373837 cites W43610082 @default.
- W2105373837 cites W73900594 @default.
- W2105373837 doi "https://doi.org/10.15676/ijeei.2011.3.2.2" @default.
- W2105373837 hasPublicationYear "2011" @default.
- W2105373837 type Work @default.
- W2105373837 sameAs 2105373837 @default.
- W2105373837 citedByCount "12" @default.
- W2105373837 countsByYear W21053738372015 @default.
- W2105373837 countsByYear W21053738372016 @default.
- W2105373837 countsByYear W21053738372017 @default.
- W2105373837 countsByYear W21053738372018 @default.
- W2105373837 countsByYear W21053738372019 @default.
- W2105373837 countsByYear W21053738372021 @default.
- W2105373837 countsByYear W21053738372022 @default.
- W2105373837 crossrefType "journal-article" @default.
- W2105373837 hasAuthorship W2105373837A5062060242 @default.
- W2105373837 hasAuthorship W2105373837A5062266427 @default.
- W2105373837 hasAuthorship W2105373837A5088750200 @default.
- W2105373837 hasBestOaLocation W21053738371 @default.
- W2105373837 hasConcept C134306372 @default.
- W2105373837 hasConcept C153180895 @default.
- W2105373837 hasConcept C154945302 @default.
- W2105373837 hasConcept C177148314 @default.
- W2105373837 hasConcept C28490314 @default.
- W2105373837 hasConcept C33923547 @default.
- W2105373837 hasConcept C41008148 @default.
- W2105373837 hasConcept C50644808 @default.
- W2105373837 hasConceptScore W2105373837C134306372 @default.
- W2105373837 hasConceptScore W2105373837C153180895 @default.
- W2105373837 hasConceptScore W2105373837C154945302 @default.
- W2105373837 hasConceptScore W2105373837C177148314 @default.
- W2105373837 hasConceptScore W2105373837C28490314 @default.
- W2105373837 hasConceptScore W2105373837C33923547 @default.
- W2105373837 hasConceptScore W2105373837C41008148 @default.
- W2105373837 hasConceptScore W2105373837C50644808 @default.
- W2105373837 hasIssue "2" @default.
- W2105373837 hasLocation W21053738371 @default.
- W2105373837 hasOpenAccess W2105373837 @default.
- W2105373837 hasPrimaryLocation W21053738371 @default.
- W2105373837 hasRelatedWork W1971541091 @default.
- W2105373837 hasRelatedWork W2033914206 @default.
- W2105373837 hasRelatedWork W2146076056 @default.
- W2105373837 hasRelatedWork W2358326011 @default.
- W2105373837 hasRelatedWork W2367193181 @default.
- W2105373837 hasRelatedWork W2385643646 @default.