Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105421461> ?p ?o ?g. }
- W2105421461 endingPage "2942" @default.
- W2105421461 startingPage "2935" @default.
- W2105421461 abstract "Chondroitin sulfate/dermatan sulfate (CS/DS) proteoglycans, major components of the central nervous system, have the potential to interact with a wide range of growth factors and neurotrophic factors that influence neuronal migration, axon guidance pathways, and neurite outgrowth. Recent studies have also revealed the role of CS/DS chains in the orchestration of the neural stem/progenitor cell micromilieu. Individual functional proteins recognize a set of multiple overlapping oligosaccharide sequences decorated to give different sulfation patterns, which are termed here “wobble CS/DS oligosaccharide motifs,” and induce signaling pathways essential for the proliferation, self-renewal, and cell lineage commitment of neural stem/progenitor cells. Chondroitin sulfate/dermatan sulfate (CS/DS) proteoglycans, major components of the central nervous system, have the potential to interact with a wide range of growth factors and neurotrophic factors that influence neuronal migration, axon guidance pathways, and neurite outgrowth. Recent studies have also revealed the role of CS/DS chains in the orchestration of the neural stem/progenitor cell micromilieu. Individual functional proteins recognize a set of multiple overlapping oligosaccharide sequences decorated to give different sulfation patterns, which are termed here “wobble CS/DS oligosaccharide motifs,” and induce signaling pathways essential for the proliferation, self-renewal, and cell lineage commitment of neural stem/progenitor cells. The discovery of populations of multipotent self-renewing neural stem cells within fetal and adult brains has raised the hope of developing new therapeutic strategies for CNS disorders. Neural stem/progenitor cells (NSPCs) 3The abbreviations used are: NSPCneural stem/progenitor cellSVZsubventricular zoneECMextracellular matrixPGproteoglycanHSheparan sulfateCSchondroitin sulfateDSdermatan sulfateGAGglycosaminoglycanGlcUAd-glucuronic acidIdoUAl-iduronic acidC/D-STchondroitin/dermatan sulfotransferaseC4STchondroitin 4-O-sulfotransferaseD4STdermatan 4-O-sulfotransferaseC6STchondroitin 6-O-sulfotransferaseU2STuronosyl 2-O-sulfotransferaseGalNAc4S-6STGalNAc-4-sulfate 6-O-sulfotransferasePTPζprotein-tyrosine phosphatase-ζRPTPβreceptor PTPβPTNpleiotrophinMKmidkineHGFhepatocyte growth factorEembryonic dayBLBPbrain lipid-binding proteinGLASTglutamate aspartate transporterESembryonic stem 3The abbreviations used are: NSPCneural stem/progenitor cellSVZsubventricular zoneECMextracellular matrixPGproteoglycanHSheparan sulfateCSchondroitin sulfateDSdermatan sulfateGAGglycosaminoglycanGlcUAd-glucuronic acidIdoUAl-iduronic acidC/D-STchondroitin/dermatan sulfotransferaseC4STchondroitin 4-O-sulfotransferaseD4STdermatan 4-O-sulfotransferaseC6STchondroitin 6-O-sulfotransferaseU2STuronosyl 2-O-sulfotransferaseGalNAc4S-6STGalNAc-4-sulfate 6-O-sulfotransferasePTPζprotein-tyrosine phosphatase-ζRPTPβreceptor PTPβPTNpleiotrophinMKmidkineHGFhepatocyte growth factorEembryonic dayBLBPbrain lipid-binding proteinGLASTglutamate aspartate transporterESembryonic stem are defined as self-renewing multipotential cells that can generate all types of neural cells, including neurons and glia (astrocytes and oligodendrocytes). In an adult brain, NSPCs are present in two distinct regions: in the subgranular zone of the dentate gyrus of the hippocampus and in the subventricular zone (SVZ) of the lateral ventricles (1Zhao C. Deng W. Gage F.H. Mechanisms and functional implications of adult neurogenesis.Cell. 2008; 132: 645-660Abstract Full Text Full Text PDF PubMed Scopus (2425) Google Scholar, 2Ming G.L. Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions.Neuron. 2011; 70: 687-702Abstract Full Text Full Text PDF PubMed Scopus (1807) Google Scholar, 3Takahashi M. Palmer T.D. Takahashi J. Gage F.H. Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina.Mol. Cell. Neurosci. 1998; 12: 340-348Crossref PubMed Scopus (268) Google Scholar, 4Lois C. Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia.Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 2074-2077Crossref PubMed Scopus (1125) Google Scholar). During brain development, the neuroepithelial cells of the neural tube expand and self-renew by symmetric division. With increasing thickness of the neuroectoderm, radial glial cells emerge and fulfill the role of neural stem cells. In the first wave, these cells self-renew by symmetrical divisions. In parallel, an asymmetric division pattern develops in which each division cycle gives rise to a radial glial cell and a neuronal progenitor. This phase of neurogenesis is followed by a phase of gliogenesis. In many regions of the CNS, oligodendrocytes precede the formation of astrocytes, which constitute the final population that is formed in the developing CNS (5Kriegstein A. Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells.Annu. Rev. Neurosci. 2009; 32: 149-184Crossref PubMed Scopus (1629) Google Scholar). The radial glial cells can transform into astrocytes, and the subpopulation of astrocytes in the SVZ has been identified as NSPCs in the adult brain (6Doetsch F. Caillé I. Lim D.A. García-Verdugo J.M. Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain.Cell. 1999; 97: 703-716Abstract Full Text Full Text PDF PubMed Scopus (3226) Google Scholar). Thereafter, the radial glia recede. Adult forms of radial glia are preserved as Bergmann glia and Müller glia solely in the cerebellum and retina, respectively (7Anthony T.E. Klein C. Fishell G. Heintz N. Radial glia serve as neuronal progenitors in all regions of the central nervous system.Neuron. 2004; 41: 881-890Abstract Full Text Full Text PDF PubMed Scopus (640) Google Scholar, 8Noctor S.C. Flint A.C. Weissman T.A. Dammerman R.S. Kriegstein A.R. Neurons derived from radial glial cells establish radial units in neocortex.Nature. 2001; 409: 714-720Crossref PubMed Scopus (1543) Google Scholar). Thus, NSPCs, which are characterized by their high proliferative potential while retaining self-renewal and pluripotency, encompass neuroepithelial cells, radial glial cells, and SVZ astrocytes (9Alvarez-Buylla A. García-Verdugo J.M. Tramontin A.D. A unified hypothesis on the lineage of neural stem cells.Nat. Rev. Neurosci. 2001; 2: 287-293Crossref PubMed Scopus (852) Google Scholar, 10Doetsch F. The glial identity of neural stem cells.Nat. Neurosci. 2003; 6: 1127-1134Crossref PubMed Scopus (608) Google Scholar). The self-renewal and differentiation properties of NSPCs are modulated by intrinsic factors such as transcription factors, intercellular interactions, and extrinsic factors present in the extracellular matrix (ECM). Understanding how these factors regulate the differentiation of NSPCs is essential to exploit potential therapeutic applications to treating various neurodegenerative disorders and spinal cord injuries. neural stem/progenitor cell subventricular zone extracellular matrix proteoglycan heparan sulfate chondroitin sulfate dermatan sulfate glycosaminoglycan d-glucuronic acid l-iduronic acid chondroitin/dermatan sulfotransferase chondroitin 4-O-sulfotransferase dermatan 4-O-sulfotransferase chondroitin 6-O-sulfotransferase uronosyl 2-O-sulfotransferase GalNAc-4-sulfate 6-O-sulfotransferase protein-tyrosine phosphatase-ζ receptor PTPβ pleiotrophin midkine hepatocyte growth factor embryonic day brain lipid-binding protein glutamate aspartate transporter embryonic stem neural stem/progenitor cell subventricular zone extracellular matrix proteoglycan heparan sulfate chondroitin sulfate dermatan sulfate glycosaminoglycan d-glucuronic acid l-iduronic acid chondroitin/dermatan sulfotransferase chondroitin 4-O-sulfotransferase dermatan 4-O-sulfotransferase chondroitin 6-O-sulfotransferase uronosyl 2-O-sulfotransferase GalNAc-4-sulfate 6-O-sulfotransferase protein-tyrosine phosphatase-ζ receptor PTPβ pleiotrophin midkine hepatocyte growth factor embryonic day brain lipid-binding protein glutamate aspartate transporter embryonic stem The microenvironment where the NSPCs reside and maintain their self-renewal, proliferation, and differentiation is termed the “stem cell niche.” The neural stem cell niche consists of restricted sets of cell types and contains a specialized microenvironment (11Morrison S.J. Spradling A.C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life.Cell. 2008; 132: 598-611Abstract Full Text Full Text PDF PubMed Scopus (1470) Google Scholar, 12Alvarez-Buylla A. Lim D.A. For the long run: maintaining germinal niches in the adult brain.Neuron. 2004; 41: 683-686Abstract Full Text Full Text PDF PubMed Scopus (1145) Google Scholar, 13Scadden D.T. The stem-cell niche as an entity of action.Nature. 2006; 441: 1075-1079Crossref PubMed Scopus (1508) Google Scholar) composed of glycoproteins, mainly tenascin C (14Gates M.A. Thomas L.B. Howard E.M. Laywell E.D. Sajin B. Faissner A. Götz B. Silver J. Steindler D.A. Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres.J. Comp. Neurol. 1995; 361: 249-266Crossref PubMed Scopus (229) Google Scholar, 15Garcion E. Halilagic A. Faissner A. ffrench-Constant C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C.Development. 2004; 131: 3423-3432Crossref PubMed Scopus (258) Google Scholar, 16von Holst A. Egbers U. Prochiantz A. Faissner A. Neural stem/progenitor cells express 20 tenascin C isoforms that are differentially regulated by Pax6.J. Biol. Chem. 2007; 282: 9172-9181Abstract Full Text Full Text PDF PubMed Scopus (73) Google Scholar); proteoglycans (PGs) bearing heparan sulfate (HS), chondroitin sulfate (CS), or dermatan sulfate (DS) side chains; and cell adhesion molecules such as polysialic acid (17Finne J. Finne U. Deagostini-Bazin H. Goridis C. Occurrence of α2–8 linked polysialosyl units in a neural cell adhesion molecule.Biochem. Biophys. Res. Commun. 1983; 112: 482-487Crossref PubMed Scopus (344) Google Scholar), SSEA-1 (stage-specific embryonic antigen-1)/Lewis X (18Hennen E. Czopka T. Faissner A. Structurally distinct Lewis X glycans distinguish subpopulations of neural stem/progenitor cells.J. Biol. Chem. 2011; 286: 16321-16331Abstract Full Text Full Text PDF PubMed Scopus (36) Google Scholar), human natural killer-1 antigen (19Vincent M. Thiery J.P. A cell surface marker for neural crest and placodal cells: further evolution in peripheral and central nervous system.Dev. Biol. 1984; 103: 468-481Crossref PubMed Scopus (166) Google Scholar), prominin (20Weigmann A. Corbeil D. Hellwig A. Huttner W.B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells.Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 12425-12430Crossref PubMed Scopus (487) Google Scholar), and gp130 (21Nakashima K. Wiese S. Yanagisawa M. Arakawa H. Kimura N. Hisatsune T. Yoshida K. Kishimoto T. Sendtner M. Taga T. Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation.J. Neurosci. 1999; 19: 5429-5434Crossref PubMed Google Scholar). Studies using knock-out mice have underscored the importance of ECM components in CNS development (22Gustafsson E. Fässler R. Insights into extracellular matrix functions from mutant mouse models.Exp. Cell Res. 2000; 261: 52-68Crossref PubMed Scopus (66) Google Scholar, 23Faissner A. Pyka M. Geissler M. Sobik T. Frischknecht R. Gundelfinger E.D. Seidenbecher C. Contributions of astrocytes to synapse formation and maturation: potential functions of the perisynaptic extracellular matrix.Brain Res. Rev. 2010; 63: 26-38Crossref PubMed Scopus (165) Google Scholar). Tenascin C-deficient mice display behavioral abnormalities (24Kiernan B.W. Garcion E. Ferguson J. Frost E.E. Torres E.M. Dunnett S.B. Saga Y. Aizawa S. Faissner A. Kaur R. Franklin R.J. ffrench-Constant C. Myelination and behaviour of tenascin-C null transgenic mice.Eur. J. Neurosci. 1999; 11: 3082-3092Crossref PubMed Scopus (55) Google Scholar) and deficits in the stem cell compartment, including a delayed acquisition of the EGF receptor (15Garcion E. Halilagic A. Faissner A. ffrench-Constant C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C.Development. 2004; 131: 3423-3432Crossref PubMed Scopus (258) Google Scholar), reduced proliferation (25Garcion E. Faissner A. ffrench-Constant C. Knockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration.Development. 2001; 128: 2485-2496Crossref PubMed Google Scholar), and accelerated differentiation of oligodendrocyte precursors (26Garwood J. Garcion E. Dobbertin A. Heck N. Calco V. ffrench-Constant C. Faissner A. The extracellular matrix glycoprotein tenascin-C is expressed by oligodendrocyte precursor cells and required for the regulation of maturation rate, survival and responsiveness to platelet-derived growth factor.Eur. J. Neurosci. 2004; 20: 2524-2540Crossref PubMed Scopus (83) Google Scholar, 27Czopka T. Von Holst A. Schmidt G. Ffrench-Constant C. Faissner A. Tenascin C and tenascin R similarly prevent the formation of myelin membranes in a RhoA-dependent manner, but antagonistically regulate the expression of myelin basic protein via a separate pathway.Glia. 2009; 57: 1790-1801Crossref PubMed Scopus (66) Google Scholar, 28Czopka T. von Holst A. ffrench-Constant C. Faissner A. Regulatory mechanisms that mediate tenascin C-dependent inhibition of oligodendrocyte precursor differentiation.J. Neurosci. 2010; 30: 12310-12322Crossref PubMed Scopus (54) Google Scholar). Studies using animals deficient in the genes involved in HS biosynthesis have provided information concerning the roles of HS in mammalian brain development (29Yamaguchi Y. Inatani M. Matsumoto Y. Ogawa J. Irie F. Roles of heparan sulfate in mammalian brain development: current views based on the findings from Ext1 conditional knockout studies.Prog. Mol. Biol. Transl. Sci. 2010; 93: 133-152Crossref PubMed Scopus (35) Google Scholar, 30Yamaguchi Y. Heparan sulfate proteoglycans in the nervous system: their diverse roles in neurogenesis, axon guidance, and synaptogenesis.Semin. Cell Dev. Biol. 2001; 12: 99-106Crossref PubMed Scopus (127) Google Scholar). Thus, the ECM in which the NSPCs reside has a number of critical roles in the development, function, and repair after injury of the CNS, yet minimal investigation in this area has been carried out. The mammalian brain is a rich source for carbohydrates, which occur in the form of PGs, glycoproteins, and glycolipids. This minireview will focus on the role played by CS/DS-PGs in CNS development, with particular emphasis on the maintenance and differentiation of NSPCs. Cloning of various sulfotransferases and glycosyltransferases involved in the synthesis of sulfated glycosaminoglycan (GAG) chains of PGs has revealed crucial functions of GAGs in development and pathophysiology. CS-GAGs are detectable in the ECM and at cell surfaces in the CNS from an early stage of development (31Oohira A. Matsui F. Matsuda M. Shoji R. Developmental change in the glycosaminoglycan composition of the rat brain.J. Neurochem. 1986; 47: 588-593Crossref PubMed Scopus (68) Google Scholar). Immunostaining of brain sections using antibodies CS-56 (specific for CS-A and CS-C), MO-225, and 473HD (both of which recognize octasaccharide sequences containing an A–D tetrasaccharide sequence composed of A and D disaccharide units; for abbreviations of disaccharide units, see Fig. 1 and Ref. 32Sugahara K. Mikami T. Chondroitin/dermatan sulfate in the central nervous system.Curr. Opin. Struct. Biol. 2007; 17: 536-545Crossref PubMed Scopus (223) Google Scholar) and mAb 2H6 (which recognizes a C–C tetrasaccharide sequence) revealed the existence of CS chains in the neurogenic regions of embryonic and adult brains (14Gates M.A. Thomas L.B. Howard E.M. Laywell E.D. Sajin B. Faissner A. Götz B. Silver J. Steindler D.A. Cell and molecular analysis of the developing and adult mouse subventricular zone of the cerebral hemispheres.J. Comp. Neurol. 1995; 361: 249-266Crossref PubMed Scopus (229) Google Scholar, 16von Holst A. Egbers U. Prochiantz A. Faissner A. Neural stem/progenitor cells express 20 tenascin C isoforms that are differentially regulated by Pax6.J. Biol. Chem. 2007; 282: 9172-9181Abstract Full Text Full Text PDF PubMed Scopus (73) Google Scholar). CS-PGs have also been found deposited between Purkinje cell surfaces and the processes of Bergmann glia (not a “classic” neurogenic region, however) (33Shimazaki Y. Nagata I. Ishii M. Tanaka M. Marunouchi T. Hata T. Maeda N. Developmental change and function of chondroitin sulfate deposited around cerebellar Purkinje cells.J. Neurosci. Res. 2005; 82: 172-183Crossref PubMed Scopus (30) Google Scholar). In addition, mAb 2A12, which is specific for iD-containing DS decasaccharide(s), showed the distribution of DS chains in the hippocampus and cerebellum of postnatal day 7 mice (34Bao X. Pavão M.S. Dos Santos J.C. Sugahara K. A functional dermatan sulfate epitope containing iduronate(2-O-sulfate)α1–3GalNAc(6-O-sulfate) disaccharide in the mouse brain: demonstration using a novel monoclonal antibody raised against dermatan sulfate of ascidian Ascidia nigra.J. Biol. Chem. 2005; 280: 23184-23193Abstract Full Text Full Text PDF PubMed Scopus (43) Google Scholar). CS chains are heterogeneous molecules with repeating disaccharide units (-4GlcUAβ1–3GalNAcβ1-) (Fig. 1). The structural complexity of CS chains is generated biosynthetically under the control of multiple sulfotransferases and DS C5-epimerases, which generate a DS domain along CS chains by converting GlcUA into l-iduronic acid (IdoUA). Depending on the number and positions of sulfate groups, a rich variety of CS or DS disaccharide units can be generated (for detailed information about CS biosynthesis, refer to reviews in Refs. 32Sugahara K. Mikami T. Chondroitin/dermatan sulfate in the central nervous system.Curr. Opin. Struct. Biol. 2007; 17: 536-545Crossref PubMed Scopus (223) Google Scholar and 35Sugahara K. Mikami T. Uyama T. Mizuguchi S. Nomura K. Kitagawa H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate.Curr. Opin. Struct. Biol. 2003; 13: 612-620Crossref PubMed Scopus (588) Google Scholar, 36Yamada S. Sugahara K. Potential therapeutic application of chondroitin sulfate/dermatan sulfate.Curr. Drug Discov. Technol. 2008; 5: 289-301Crossref PubMed Scopus (205) Google Scholar, 37Silbert J.E. Sugumaran G. Biosynthesis of chondroitin/dermatan sulfate.IUBMB Life. 2002; 54: 177-186Crossref PubMed Scopus (256) Google Scholar). Sulfate groups are transferred from 3′-phosphoadenosine 5′-phosphosulfate to the specific acceptor sites in CS/DS chains by chondroitin/dermatan sulfotransferases (C/D-STs) that are located in the Golgi apparatus (32Sugahara K. Mikami T. Chondroitin/dermatan sulfate in the central nervous system.Curr. Opin. Struct. Biol. 2007; 17: 536-545Crossref PubMed Scopus (223) Google Scholar, 35Sugahara K. Mikami T. Uyama T. Mizuguchi S. Nomura K. Kitagawa H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate.Curr. Opin. Struct. Biol. 2003; 13: 612-620Crossref PubMed Scopus (588) Google Scholar). These enzymes are classified into the following four groups: chondroitin/dermatan 4-O-sulfotransferases (C4ST/D4ST), chondroitin 6-O-sulfotransferase (C6ST), uronosyl 2-O-sulfotransferase (U2ST), and GalNAc-4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST). Three C4ST isoforms (38Yamauchi S. Mita S. Matsubara T. Fukuta M. Habuchi H. Kimata K. Habuchi O. Molecular cloning and expression of chondroitin 4-sulfotransferase.J. Biol. Chem. 2000; 275: 8975-8981Abstract Full Text Full Text PDF PubMed Scopus (98) Google Scholar, 39Hiraoka N. Nakagawa H. Ong E. Akama T.O. Fukuda M.N. Fukuda M. Molecular cloning and expression of two distinct human chondroitin 4-O-sulfotransferases that belong to the HNK-1 sulfotransferase gene family.J. Biol. Chem. 2000; 275: 20188-20196Abstract Full Text Full Text PDF PubMed Scopus (125) Google Scholar, 40Kang H.G. Evers M.R. Xia G. Baenziger J.U. Schachner M. Molecular cloning and characterization of chondroitin-4-O-sulfotransferase-3: a novel member of the HNK-1 family of sulfotransferases.J. Biol. Chem. 2002; 277: 34766-34772Abstract Full Text Full Text PDF PubMed Scopus (71) Google Scholar), two C6ST isoforms (41Fukuta M. Uchimura K. Nakashima K. Kato M. Kimata K. Shinomura T. Habuchi O. Molecular cloning and expression of chick chondrocyte chondroitin 6-sulfotransferase.J. Biol. Chem. 1995; 270: 18575-18580Abstract Full Text Full Text PDF PubMed Scopus (122) Google Scholar, 42Kitagawa H. Fujita M. Ito N. Sugahara K. Molecular cloning and expression of a novel chondroitin 6-O-sulfotransferase.J. Biol. Chem. 2000; 275: 21075-21080Abstract Full Text Full Text PDF PubMed Scopus (81) Google Scholar), two DS epimerase isoforms (DS-epi1 and DS-epi2) (43Pacheco B. Maccarana M. Goodlett D.R. Malmström A. Malmström L. Identification of the active site of DS-epimerase 1 and requirement of N-glycosylation for enzyme function.J. Biol. Chem. 2009; 284: 1741-1747Abstract Full Text Full Text PDF PubMed Scopus (25) Google Scholar, 44Akatsu C. Mizumoto S. Kaneiwa T. Maccarana M. Malmström A. Yamada S. Sugahara K. Dermatan sulfate epimerase 2 is the predominant isozyme in the formation of the chondroitin sulfate/dermatan sulfate hybrid structure in postnatal developing mouse brain.Glycobiology. 2011; 21: 565-574Crossref PubMed Scopus (30) Google Scholar), D4ST1 (45Mikami T. Mizumoto S. Kago N. Kitagawa H. Sugahara K. Specificities of three distinct human chondroitin/dermatan N-acetylgalactosamine 4-O-sulfotransferases demonstrated using partially desulfated dermatan sulfate as an acceptor: implication of differential roles in dermatan sulfate biosynthesis.J. Biol. Chem. 2003; 278: 36115-36127Abstract Full Text Full Text PDF PubMed Scopus (102) Google Scholar), U2ST (46Kobayashi M. Sugumaran G. Liu J. Shworak N.W. Silbert J.E. Rosenberg R.D. Molecular cloning and characterization of a human uronyl 2-sulfotransferase that sulfates iduronyl and glucuronyl residues in dermatan/chondroitin sulfate.J. Biol. Chem. 1999; 274: 10474-10480Abstract Full Text Full Text PDF PubMed Scopus (129) Google Scholar), and GalNAc4S-6ST (47Ohtake S. Ito Y. Fukuta M. Habuchi O. Human N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase cDNA is related to human B cell recombination activating gene-associated gene.J. Biol. Chem. 2001; 276: 43894-43900Abstract Full Text Full Text PDF PubMed Scopus (92) Google Scholar) have been identified in mammals. Gene expression levels of these enzymes correlated with the amount of sulfated products that corresponded to each enzymatic activity (48Properzi F. Carulli D. Asher R.A. Muir E. Camargo L.M. van Kuppevelt T.H. ten Dam G.B. Furukawa Y. Mikami T. Sugahara K. Toida T. Geller H.M. Fawcett J.W. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia.Eur. J. Neurosci. 2005; 21: 378-390Crossref PubMed Scopus (162) Google Scholar), which holds the promise that studies of gene expression of C/D-STs will yield more detailed insights into the sulfation profiles of CS, DS, and their hybrid chains. The expression of CS biosynthetic enzymes in the postnatal brain is dynamically regulated during development (49Mitsunaga C. Mikami T. Mizumoto S. Fukuda J. Sugahara K. Chondroitin sulfate/dermatan sulfate hybrid chains in the development of cerebellum: spatiotemporal regulation of the expression of critical disulfated disaccharides by specific sulfotransferases.J. Biol. Chem. 2006; 281: 18942-18952Abstract Full Text Full Text PDF PubMed Scopus (51) Google Scholar). It has been demonstrated that the ratio of C4ST and C6ST activities forming the specific sulfation profile changes markedly with development in the embryonic chick brain (50Kitagawa H. Tsutsumi K. Tone Y. Sugahara K. Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain.J. Biol. Chem. 1997; 272: 31377-31381Abstract Full Text Full Text PDF PubMed Scopus (165) Google Scholar). In situ hybridization of mouse brain revealed that the sulfotransferase genes, including C4ST1 and C4ST2, which are involved in the synthesis of A units, a precursor for B/iB units, in addition to the GalNAc4S-6ST gene, which synthesizes E/iE units, are ubiquitously expressed in the developing brain, whereas expression of the D4ST1 and U2ST genes (which synthesize iA and D/iD/B/iB units, respectively) is restricted to the cerebellum (32Sugahara K. Mikami T. Chondroitin/dermatan sulfate in the central nervous system.Curr. Opin. Struct. Biol. 2007; 17: 536-545Crossref PubMed Scopus (223) Google Scholar, 44Akatsu C. Mizumoto S. Kaneiwa T. Maccarana M. Malmström A. Yamada S. Sugahara K. Dermatan sulfate epimerase 2 is the predominant isozyme in the formation of the chondroitin sulfate/dermatan sulfate hybrid structure in postnatal developing mouse brain.Glycobiology. 2011; 21: 565-574Crossref PubMed Scopus (30) Google Scholar, 49Mitsunaga C. Mikami T. Mizumoto S. Fukuda J. Sugahara K. Chondroitin sulfate/dermatan sulfate hybrid chains in the development of cerebellum: spatiotemporal regulation of the expression of critical disulfated disaccharides by specific sulfotransferases.J. Biol. Chem. 2006; 281: 18942-18952Abstract Full Text Full Text PDF PubMed Scopus (51) Google Scholar, 51Akita K. von Holst A. Furukawa Y. Mikami T. Sugahara K. Faissner A. Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance.Stem Cells. 2008; 26: 798-809Crossref PubMed Scopus (91) Google Scholar, 52Purushothaman A. Fukuda J. Mizumoto S. ten Dam G.B. van Kuppevelt T.H. Kitagawa H. Mikami T. Sugahara K. Functions of chondroitin sulfate/dermatan sulfate chains in brain development: critical roles of E and iE disaccharide units recognized by a single chain antibody GD3G7.J. Biol. Chem. 2007; 282: 19442-19452Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar). Recently, Akatsu et al. (44Akatsu C. Mizumoto S. Kaneiwa T. Maccarana M. Malmström A. Yamada S. Sugahara K. Dermatan sulfate epimerase 2 is the predominant isozyme in the formation of the chondroitin sulfate/dermatan sulfate hybrid structure in postnatal developing mouse brain.Glycobiology. 2011; 21: 565-574Crossref PubMed Scopus (30) Google Scholar) also found that the DS-epi2 rather than DS-epi1 is the predominant isoform that is ubiquitously expressed in the developing brain after birth, and its expression correlated with the presence of high levels of IdoUA-containing iD units and iB units at every developmental stage. On the basis of these observations, we speculate that, like HS, CS in the brain also has structural motifs composed of oversulfated and/or IdoUA-containing disaccharide units that change markedly with embryonic development. Genetically engineered mice deficient in protein-tyrosine phosphatase-ζ (PTPζ)/receptor PTPβ (RPTPβ) CS-PG, which is a receptor protein-tyrosine phosphatase with one transmembrane domain and two intracellular tyrosine phosphatase modules (an isoform of this gene that comprises the complete ectodomain is released as CS-PG and known as phosphacan/DSD-1-PG in rat and mouse, respectively), exhibit an age-dependent impairment of spatial learning and enhancement of long-term potentiation in the hippocampus (53Tamura H. Fukada M. Fujikawa A. Noda M. Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP.Neurosci. Lett. 2006; 399: 33-38Crossref PubMed Scopus (76) Google Scholar). This is suggested to be due to impairment in the signaling of pleiotrophin (PTN)/midkine (MK) because PTPζ/RPTPβ is a receptor for these cytokines. Similarly, knockdown of other CS-PGs such as neurocan and brevican in mice also showed no obvious abnormalities in the brain, but the maintenance of long-term potentiation was disrupted, supporting the function of CS-PG in memory and learning (35Sugahara K. Mikami T. Uyama T. Mizuguchi S. Nomura K. Kitagawa H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate.Curr. Opin. Struct. Biol. 2003; 13: 612-620Crossref PubMed Scopus (588) Google Scholar). The reported functions of brain CS/DS chains in neuritogenesis are controversial because they can act as promoters as well as inhibitors (32Sugahara K. Mikami T. Chondroitin/dermatan sulfate in the central nervous system.Curr. Opin. Struct. Biol. 2007; 17: 536-545Crossref PubMed Scopus (223) Google Scholar, 35Sugahara K. Mikami T. Uyama T. Mizuguchi S. Nomura K. Kitagawa H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate.Curr. Opin. Struct. Biol. 2003; 13: 612-620Crossref PubMed Scopus (588) Google Scholar, 54Bandtlow C.E. Zimmermann D.R. Proteoglycans in the developing brain: new conceptual insights for old proteins.Physiol. Rev. 2000; 80: 1267-1290Crossref PubMed Scopus (537) Google Scholar, 55Faissner A. Clement A. Lochter A. Streit A. Mandl C. Schachner M. Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties.J. Cell Biol. 1994; 126: 783-799Crossref PubMed Scopus (345) Google Scholar, 56Clement A.M. Nadanaka S. Masayama K. Mandl C. Sugahara K. Faissner A. The DS" @default.
- W2105421461 created "2016-06-24" @default.
- W2105421461 creator A5026189128 @default.
- W2105421461 creator A5080549041 @default.
- W2105421461 creator A5088055386 @default.
- W2105421461 date "2012-01-01" @default.
- W2105421461 modified "2023-10-18" @default.
- W2105421461 title "Chondroitin Sulfate “Wobble Motifs” Modulate Maintenance and Differentiation of Neural Stem Cells and Their Progeny" @default.
- W2105421461 cites W1503727145 @default.
- W2105421461 cites W1592283056 @default.
- W2105421461 cites W1825113405 @default.
- W2105421461 cites W1872702720 @default.
- W2105421461 cites W1913314522 @default.
- W2105421461 cites W1967327436 @default.
- W2105421461 cites W1972195598 @default.
- W2105421461 cites W1975149550 @default.
- W2105421461 cites W1975980965 @default.
- W2105421461 cites W1976109973 @default.
- W2105421461 cites W1978474485 @default.
- W2105421461 cites W1983955843 @default.
- W2105421461 cites W1987529353 @default.
- W2105421461 cites W1988682653 @default.
- W2105421461 cites W1990574061 @default.
- W2105421461 cites W1992913540 @default.
- W2105421461 cites W1995083451 @default.
- W2105421461 cites W1996306346 @default.
- W2105421461 cites W1996762246 @default.
- W2105421461 cites W1997238313 @default.
- W2105421461 cites W1999279952 @default.
- W2105421461 cites W2000460436 @default.
- W2105421461 cites W2002514998 @default.
- W2105421461 cites W2003849332 @default.
- W2105421461 cites W2004785268 @default.
- W2105421461 cites W2005960069 @default.
- W2105421461 cites W2008352254 @default.
- W2105421461 cites W2018909009 @default.
- W2105421461 cites W2019085666 @default.
- W2105421461 cites W2025990173 @default.
- W2105421461 cites W2026318687 @default.
- W2105421461 cites W2026318737 @default.
- W2105421461 cites W2032196402 @default.
- W2105421461 cites W2035819477 @default.
- W2105421461 cites W2039070728 @default.
- W2105421461 cites W2039900815 @default.
- W2105421461 cites W2041768758 @default.
- W2105421461 cites W2042633182 @default.
- W2105421461 cites W2043876120 @default.
- W2105421461 cites W2050153572 @default.
- W2105421461 cites W2050689607 @default.
- W2105421461 cites W2053191670 @default.
- W2105421461 cites W2054645266 @default.
- W2105421461 cites W2056088021 @default.
- W2105421461 cites W2057181320 @default.
- W2105421461 cites W2057608998 @default.
- W2105421461 cites W2058953761 @default.
- W2105421461 cites W2061234706 @default.
- W2105421461 cites W2064464712 @default.
- W2105421461 cites W2065754676 @default.
- W2105421461 cites W2069377303 @default.
- W2105421461 cites W2069935884 @default.
- W2105421461 cites W2072284391 @default.
- W2105421461 cites W2072657235 @default.
- W2105421461 cites W2075894660 @default.
- W2105421461 cites W2076669421 @default.
- W2105421461 cites W2078070463 @default.
- W2105421461 cites W2078326203 @default.
- W2105421461 cites W2081010173 @default.
- W2105421461 cites W2082808714 @default.
- W2105421461 cites W2083575031 @default.
- W2105421461 cites W2084478104 @default.
- W2105421461 cites W2085339091 @default.
- W2105421461 cites W2086016213 @default.
- W2105421461 cites W2086234005 @default.
- W2105421461 cites W2087612255 @default.
- W2105421461 cites W2087740997 @default.
- W2105421461 cites W2088635545 @default.
- W2105421461 cites W2089382319 @default.
- W2105421461 cites W2089648082 @default.
- W2105421461 cites W2092902908 @default.
- W2105421461 cites W2093885717 @default.
- W2105421461 cites W2098974321 @default.
- W2105421461 cites W2099134671 @default.
- W2105421461 cites W2099850908 @default.
- W2105421461 cites W2102029805 @default.
- W2105421461 cites W2104940357 @default.
- W2105421461 cites W2105241495 @default.
- W2105421461 cites W2111787323 @default.
- W2105421461 cites W2115961895 @default.
- W2105421461 cites W2116010085 @default.
- W2105421461 cites W2120186017 @default.
- W2105421461 cites W2121859145 @default.
- W2105421461 cites W2122230709 @default.
- W2105421461 cites W2124986774 @default.
- W2105421461 cites W2132164731 @default.
- W2105421461 cites W2135046848 @default.
- W2105421461 cites W2143612388 @default.
- W2105421461 cites W2146477758 @default.
- W2105421461 cites W2152980841 @default.