Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105473476> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2105473476 endingPage "58" @default.
- W2105473476 startingPage "50" @default.
- W2105473476 abstract "The purpose of this study was to demonstrate the usefulness of different multi-trait models and random regression models (RRM) using Legendre polynomials for the genetic evaluation of growth in Brazilian Bonsmara cattle. Data comprised 54,039 weight records of Bonsmara cattle, from birth to adult age (614 days of age). A standard multi-trait model (SMT); reduced rank analyses fitting the first 2 genetic principal components (PC2), reduced rank analyses fitting the first direct additive genetic and maternal principal components (PC22), reduced rank analyses fitting the first direct additive genetic, maternal, and maternal permanent environmental principal components (PC222), were carried out. For all traits, genetic additive direct and maternal, and maternal permanent environmental were considered as random effects. Furthermore, linear and quadratic effects of age of the animal at recording (except for birth weight), and dam age at calving were included as covariates. The analyses were performed using a single-trait RRM. Fourth-order Legendre polynomials to model trends in the population mean. Additive direct, animal permanent environmental effects, maternal genetic, and maternal permanent environmental effects were modeled with Legendre polynomials. In addition, contemporary group as fixed effects, dam age at calving (linear and quadratic), age at recording (linear) as covariates were included. Genetic parameters from different approaches were similar, when the optimal number of PC was fitted. The model PC222 (reduced rank analyses fitting the first direct additive genetic, maternal, and maternal permanent environmental principal components) allows a reduction of the number of parameters to be estimated, and this methods was sufficient to describe the genetic covariance structure adequately." @default.
- W2105473476 created "2016-06-24" @default.
- W2105473476 creator A5000035532 @default.
- W2105473476 creator A5014874776 @default.
- W2105473476 creator A5037685796 @default.
- W2105473476 creator A5047454434 @default.
- W2105473476 date "2014-04-01" @default.
- W2105473476 modified "2023-10-16" @default.
- W2105473476 title "Models for genetic evaluation of growth of Brazilian Bonsmara cattle" @default.
- W2105473476 cites W100425534 @default.
- W2105473476 cites W1585406811 @default.
- W2105473476 cites W1976512047 @default.
- W2105473476 cites W1994552776 @default.
- W2105473476 cites W1995457650 @default.
- W2105473476 cites W2076582244 @default.
- W2105473476 cites W2099720177 @default.
- W2105473476 cites W2113529822 @default.
- W2105473476 cites W2129131221 @default.
- W2105473476 cites W2131371999 @default.
- W2105473476 cites W2137808057 @default.
- W2105473476 cites W2154308284 @default.
- W2105473476 cites W2159862679 @default.
- W2105473476 cites W2318349154 @default.
- W2105473476 cites W77870844 @default.
- W2105473476 doi "https://doi.org/10.1016/j.livsci.2014.01.031" @default.
- W2105473476 hasPublicationYear "2014" @default.
- W2105473476 type Work @default.
- W2105473476 sameAs 2105473476 @default.
- W2105473476 citedByCount "9" @default.
- W2105473476 countsByYear W21054734762014 @default.
- W2105473476 countsByYear W21054734762015 @default.
- W2105473476 countsByYear W21054734762017 @default.
- W2105473476 countsByYear W21054734762020 @default.
- W2105473476 countsByYear W21054734762021 @default.
- W2105473476 crossrefType "journal-article" @default.
- W2105473476 hasAuthorship W2105473476A5000035532 @default.
- W2105473476 hasAuthorship W2105473476A5014874776 @default.
- W2105473476 hasAuthorship W2105473476A5037685796 @default.
- W2105473476 hasAuthorship W2105473476A5047454434 @default.
- W2105473476 hasConcept C150903083 @default.
- W2105473476 hasConcept C33923547 @default.
- W2105473476 hasConcept C86803240 @default.
- W2105473476 hasConceptScore W2105473476C150903083 @default.
- W2105473476 hasConceptScore W2105473476C33923547 @default.
- W2105473476 hasConceptScore W2105473476C86803240 @default.
- W2105473476 hasLocation W21054734761 @default.
- W2105473476 hasOpenAccess W2105473476 @default.
- W2105473476 hasPrimaryLocation W21054734761 @default.
- W2105473476 hasRelatedWork W1641042124 @default.
- W2105473476 hasRelatedWork W1990804418 @default.
- W2105473476 hasRelatedWork W1993764875 @default.
- W2105473476 hasRelatedWork W2013243191 @default.
- W2105473476 hasRelatedWork W2046158694 @default.
- W2105473476 hasRelatedWork W2051339581 @default.
- W2105473476 hasRelatedWork W2082860237 @default.
- W2105473476 hasRelatedWork W2117258802 @default.
- W2105473476 hasRelatedWork W2130076355 @default.
- W2105473476 hasRelatedWork W2151865869 @default.
- W2105473476 hasVolume "162" @default.
- W2105473476 isParatext "false" @default.
- W2105473476 isRetracted "false" @default.
- W2105473476 magId "2105473476" @default.
- W2105473476 workType "article" @default.