Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105476768> ?p ?o ?g. }
- W2105476768 endingPage "145" @default.
- W2105476768 startingPage "129" @default.
- W2105476768 abstract "ABSTRACT Sedimentary rocks rich in organic matter, such as coal and carbonaceous shales, are characterized by remarkably low thermal conductivities in the range of 0.2–1.0 W m −1 °C −1 , lower by a factor of 2 or more than other common rock types. As a result of this natural insulating effect, temperature gradients in organic rich, fine‐grained sediments may become elevated even with a typical continental basal heat flow of 60 mW m −2 . Underlying rocks will attain higher temperatures and higher thermal maturities than would otherwise occur. A two‐dimensional finite element model of fluid flow and heat transport has been used to study the insulating effect of low thermal conductivity carbonaceous sediments in an uplifted foreland basin. Topography‐driven recharge is assumed to be the major driving force for regional groundwater flow. Our model section cuts through the Arkoma Basin to Ozark Plateau and terminates near the Missouri River, west of St. Louis. Fluid inclusions, organic maturation, and fission track evidence show that large areas of upper Cambrian rocks in southern Missouri have experienced high temperatures (100–140 °C) at shallow depths (< 1.5 km). Low thermal conductivity sediments, such as coal and organic rich mudstone were deposited over the Arkoma Basin and Ozark Plateau, as well as most of the mid‐continent of North America, during the Late Palaeozoic. Much of these Late Palaeozoic sediments were subsequently removed by erosion. Our model results are consistent with high temperatures (100–130 °C) in the groundwater discharge region at shallow depths (< 1.5 km) even with a typical continental basal heat flow of 60 mW m −2 . Higher heat energy retention in basin sediments and underlying basement rocks prior to basin‐scale fluid flow and higher rates of advective heat transport along basal aquifers owing to lower fluid viscosity (more efficient heat transport) contribute to higher temperatures in the discharge region. Thermal insulation by organic rich sediments which traps heat transported by upward fluid advection is the dominant mechanism for elevated temperatures in the discharge region. This suggests localized formation of ore deposits within a basin‐scale fluid flow system may be caused by the juxtaposition of upward fluid discharge with overlying areas of insulating organic rich sediments. The additional temperature increment contributed to underlying rocks by this insulating effect may help to explain anomalous thermal maturity of the Arkoma Basin and Ozark Plateau, reducing the need to call upon excessive burial or high basal heat flow (80–100 mW m −2 ) in the past. After subsequent uplift and erosion remove the insulating carbonaceous layer, the model slowly returns to a normal geothermal gradient of about 30 °C km −1 ." @default.
- W2105476768 created "2016-06-24" @default.
- W2105476768 creator A5010367302 @default.
- W2105476768 creator A5062036586 @default.
- W2105476768 date "2002-06-01" @default.
- W2105476768 modified "2023-10-18" @default.
- W2105476768 title "Insulating effect of coals and organic rich shales: implications for topography-driven fluid flow, heat transport, and genesis of ore deposits in the Arkoma Basin and Ozark Plateau" @default.
- W2105476768 cites W1566030289 @default.
- W2105476768 cites W1573629738 @default.
- W2105476768 cites W1594069649 @default.
- W2105476768 cites W1969599221 @default.
- W2105476768 cites W1970517043 @default.
- W2105476768 cites W1973113383 @default.
- W2105476768 cites W1976543040 @default.
- W2105476768 cites W1984847446 @default.
- W2105476768 cites W1985768229 @default.
- W2105476768 cites W1986228795 @default.
- W2105476768 cites W1993187572 @default.
- W2105476768 cites W1997637573 @default.
- W2105476768 cites W1997931559 @default.
- W2105476768 cites W1998938053 @default.
- W2105476768 cites W2001766253 @default.
- W2105476768 cites W2008586630 @default.
- W2105476768 cites W2016226138 @default.
- W2105476768 cites W2031957914 @default.
- W2105476768 cites W2036006811 @default.
- W2105476768 cites W2040212629 @default.
- W2105476768 cites W2053200498 @default.
- W2105476768 cites W2057351060 @default.
- W2105476768 cites W2061921518 @default.
- W2105476768 cites W2071412535 @default.
- W2105476768 cites W2073716837 @default.
- W2105476768 cites W2077528689 @default.
- W2105476768 cites W2086254860 @default.
- W2105476768 cites W2089168545 @default.
- W2105476768 cites W2095563214 @default.
- W2105476768 cites W2111672369 @default.
- W2105476768 cites W2116327609 @default.
- W2105476768 cites W2121347244 @default.
- W2105476768 cites W2122718882 @default.
- W2105476768 cites W2123702111 @default.
- W2105476768 cites W2124628155 @default.
- W2105476768 cites W2128396581 @default.
- W2105476768 cites W2129174816 @default.
- W2105476768 cites W2145597404 @default.
- W2105476768 cites W2151968680 @default.
- W2105476768 cites W2155775570 @default.
- W2105476768 cites W2159792889 @default.
- W2105476768 cites W2161191234 @default.
- W2105476768 cites W2162439861 @default.
- W2105476768 cites W2164112204 @default.
- W2105476768 cites W2168052720 @default.
- W2105476768 cites W2226102083 @default.
- W2105476768 cites W2320215452 @default.
- W2105476768 cites W2325001532 @default.
- W2105476768 cites W4229521433 @default.
- W2105476768 doi "https://doi.org/10.1046/j.1365-2117.2002.00172.x" @default.
- W2105476768 hasPublicationYear "2002" @default.
- W2105476768 type Work @default.
- W2105476768 sameAs 2105476768 @default.
- W2105476768 citedByCount "21" @default.
- W2105476768 countsByYear W21054767682012 @default.
- W2105476768 countsByYear W21054767682013 @default.
- W2105476768 countsByYear W21054767682015 @default.
- W2105476768 countsByYear W21054767682020 @default.
- W2105476768 countsByYear W21054767682021 @default.
- W2105476768 countsByYear W21054767682022 @default.
- W2105476768 countsByYear W21054767682023 @default.
- W2105476768 crossrefType "journal-article" @default.
- W2105476768 hasAuthorship W2105476768A5010367302 @default.
- W2105476768 hasAuthorship W2105476768A5062036586 @default.
- W2105476768 hasConcept C109007969 @default.
- W2105476768 hasConcept C114793014 @default.
- W2105476768 hasConcept C127313418 @default.
- W2105476768 hasConcept C13106087 @default.
- W2105476768 hasConcept C131227075 @default.
- W2105476768 hasConcept C134306372 @default.
- W2105476768 hasConcept C155627805 @default.
- W2105476768 hasConcept C174091901 @default.
- W2105476768 hasConcept C17409809 @default.
- W2105476768 hasConcept C178790620 @default.
- W2105476768 hasConcept C185592680 @default.
- W2105476768 hasConcept C187320778 @default.
- W2105476768 hasConcept C193748577 @default.
- W2105476768 hasConcept C200646496 @default.
- W2105476768 hasConcept C2780030769 @default.
- W2105476768 hasConcept C33923547 @default.
- W2105476768 hasConcept C48743137 @default.
- W2105476768 hasConcept C5900021 @default.
- W2105476768 hasConcept C6494504 @default.
- W2105476768 hasConcept C75622301 @default.
- W2105476768 hasConcept C76177295 @default.
- W2105476768 hasConceptScore W2105476768C109007969 @default.
- W2105476768 hasConceptScore W2105476768C114793014 @default.
- W2105476768 hasConceptScore W2105476768C127313418 @default.
- W2105476768 hasConceptScore W2105476768C13106087 @default.
- W2105476768 hasConceptScore W2105476768C131227075 @default.
- W2105476768 hasConceptScore W2105476768C134306372 @default.