Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105509265> ?p ?o ?g. }
- W2105509265 abstract "A common practice in modern engineering is that of simulation-driven optimization. This implies replacing costly and lengthy laboratory experiments with computer experiments, i.e. computationally-intensive simulations which model real world physics with high fidelity. Due to the complexity of such simulations a single simulation run can require up to several hours of CPU time of a high-performance computer [45, 56, 61]. With computer experiments the simulation-driven optimization process is cast as a nonlinear optimization problem having three distinct features: There is typically no analytic expression for the relation between inputs (candidate designs) and outputs, i.e. it is a black-box function. Each simulation run is expensive so only a small number (∼ 200) of runs can be made. The underlying real-world physics and/or numerical solution often yield an inputs– output landscape which is multimodal and nonsmooth. A promising approach to tackle such problems is the surrogate-assisted memetic optimization. A memetic algorithm combines an evolutionary algorithm (EA) with an efficient local search so as to obtain both efficient exploration and exploitation during the optimization search [21, 65]. A surrogate-model is a computationally cheaper mathematical approximation of the expensive objective function and is used during the optimization search in lieu of the expensive function [2, 45] (in some references the term metamodel is used synonymously while ‘surrogate-model’ is reserved for a lower-fidelity simulation [42, 87]). Thus, using surrogate-models circumvents the problem of simulation cost and allows evaluation of many candidate designs. In this study we propose a surrogate-assisted memetic algorithm which builds upon recent advances in computational intelligence and optimization [9, 53, 60, 83–85, 94]. The proposed algorithm aims to address four open issues: Obtaining a global model with a small generalization error is too expensive: analysis has shown the number of sites required to achieve a fixed generalization error grows exponentially with the problem dimension [79]. To avoid allocating all function evaluations to the global model we employ a combination of global and local surrogate-models to achieve an efficient optimization search. O pe n A cc es s D at ab as e w w w .ite ch on lin e. co m" @default.
- W2105509265 created "2016-06-24" @default.
- W2105509265 creator A5035132865 @default.
- W2105509265 date "2008-11-01" @default.
- W2105509265 modified "2023-09-26" @default.
- W2105509265 title "A Memetic Algorithm Assisted by an Adaptive Topology RBF Network and Variable Local Models for Expensive Optimization Problems" @default.
- W2105509265 cites W1481623510 @default.
- W2105509265 cites W1498270872 @default.
- W2105509265 cites W1507162258 @default.
- W2105509265 cites W1522125287 @default.
- W2105509265 cites W1529042793 @default.
- W2105509265 cites W1533374193 @default.
- W2105509265 cites W1548502347 @default.
- W2105509265 cites W1591022951 @default.
- W2105509265 cites W1635118735 @default.
- W2105509265 cites W1695563742 @default.
- W2105509265 cites W170603196 @default.
- W2105509265 cites W1781059203 @default.
- W2105509265 cites W1922596480 @default.
- W2105509265 cites W192384649 @default.
- W2105509265 cites W1963751895 @default.
- W2105509265 cites W1966878414 @default.
- W2105509265 cites W1968747946 @default.
- W2105509265 cites W1972978214 @default.
- W2105509265 cites W1978181253 @default.
- W2105509265 cites W1978646089 @default.
- W2105509265 cites W1981039871 @default.
- W2105509265 cites W1981388088 @default.
- W2105509265 cites W1984603815 @default.
- W2105509265 cites W1989958607 @default.
- W2105509265 cites W1999698583 @default.
- W2105509265 cites W2000836282 @default.
- W2105509265 cites W2001842014 @default.
- W2105509265 cites W2007175576 @default.
- W2105509265 cites W200750156 @default.
- W2105509265 cites W2012451526 @default.
- W2105509265 cites W2013695155 @default.
- W2105509265 cites W2016268734 @default.
- W2105509265 cites W2018044188 @default.
- W2105509265 cites W2024697317 @default.
- W2105509265 cites W2024974798 @default.
- W2105509265 cites W2027945080 @default.
- W2105509265 cites W2030028087 @default.
- W2105509265 cites W2038669746 @default.
- W2105509265 cites W2038845890 @default.
- W2105509265 cites W2039402388 @default.
- W2105509265 cites W2044771513 @default.
- W2105509265 cites W2047588163 @default.
- W2105509265 cites W2047925180 @default.
- W2105509265 cites W2053934160 @default.
- W2105509265 cites W2057869439 @default.
- W2105509265 cites W2060624994 @default.
- W2105509265 cites W2065923787 @default.
- W2105509265 cites W2072773743 @default.
- W2105509265 cites W2074797641 @default.
- W2105509265 cites W2075795262 @default.
- W2105509265 cites W2078035581 @default.
- W2105509265 cites W2079224763 @default.
- W2105509265 cites W2086518770 @default.
- W2105509265 cites W2092582887 @default.
- W2105509265 cites W2094538992 @default.
- W2105509265 cites W2094595720 @default.
- W2105509265 cites W2105518356 @default.
- W2105509265 cites W2107750210 @default.
- W2105509265 cites W2112081648 @default.
- W2105509265 cites W2112147653 @default.
- W2105509265 cites W2113442785 @default.
- W2105509265 cites W2114865067 @default.
- W2105509265 cites W2115343860 @default.
- W2105509265 cites W2131612655 @default.
- W2105509265 cites W2135038320 @default.
- W2105509265 cites W2138238457 @default.
- W2105509265 cites W2143956139 @default.
- W2105509265 cites W2145475762 @default.
- W2105509265 cites W2147922634 @default.
- W2105509265 cites W2153480861 @default.
- W2105509265 cites W2154047522 @default.
- W2105509265 cites W2155399784 @default.
- W2105509265 cites W2156677085 @default.
- W2105509265 cites W2170698782 @default.
- W2105509265 cites W2171277043 @default.
- W2105509265 cites W251735463 @default.
- W2105509265 cites W2610216665 @default.
- W2105509265 cites W2611210475 @default.
- W2105509265 cites W3015571647 @default.
- W2105509265 cites W42253513 @default.
- W2105509265 cites W605575788 @default.
- W2105509265 cites W71960263 @default.
- W2105509265 cites W2103468676 @default.
- W2105509265 cites W2108422278 @default.
- W2105509265 cites W2184335495 @default.
- W2105509265 doi "https://doi.org/10.5772/6137" @default.
- W2105509265 hasPublicationYear "2008" @default.
- W2105509265 type Work @default.
- W2105509265 sameAs 2105509265 @default.
- W2105509265 citedByCount "4" @default.
- W2105509265 countsByYear W21055092652015 @default.
- W2105509265 countsByYear W21055092652016 @default.
- W2105509265 countsByYear W21055092652022 @default.
- W2105509265 crossrefType "book-chapter" @default.