Matches in SemOpenAlex for { <https://semopenalex.org/work/W210554013> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W210554013 abstract "In this paper we show that lower bounds for bounded depth arithmetic circuits imply derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally, if there exists an explicit polynomial $f$ that cannot be computed by a depth $d$ arithmetic circuit of small size, then there exists an efficient deterministic black-box algorithm to test whether a given depth $d-5$ circuit that computes a polynomial of relatively small individual degrees is identically zero or not. In particular, if we are guaranteed that the tested circuit computes a multilinear polynomial, then we can perform the identity test efficiently. To the best of our knowledge this is the first hardness-randomness tradeoff for bounded depth arithmetic circuits. The above results are obtained using the arithmetic Nisan-Wigderson generator of Kabanets and Impagliazzo together with a new theorem on bounded depth circuits, which is the main technical contribution of our work. This theorem deals with polynomial equations of the form $P(x_1,dots,x_n,y)equiv0$ and shows that if $P$ has a circuit of depth $d$ and size $s$ and if the polynomial $f(x_1,dots,x_n)$ satisfies $P(x_1,dots,x_n,f)equiv0$, then $f$ has a circuit of depth $d+3$ and size $mathrm{poly}(s,m^r)$, where $m$ is the total degree of $f$ and $r$ is the degree of $y$ in $P$. This circuit for $f$ can be found probabilistically in time $mathrm{poly}(s,m^r)$. In the other direction we observe that the methods of Kabanets and Impagliazzo can be used to show that derandomizing identity testing for bounded depth circuits implies lower bounds for the same class of circuits. More formally, if we can derandomize polynomial identity testing for bounded depth circuits, then NEXP does not have bounded depth arithmetic circuits. That is, either $mathrm{NEXP}notsubseteq P/mathrm{poly}$ or the Permanent is not computable by polynomial size bounded depth arithmetic circuits." @default.
- W210554013 created "2016-06-24" @default.
- W210554013 creator A5004182247 @default.
- W210554013 creator A5013053155 @default.
- W210554013 creator A5041051779 @default.
- W210554013 date "2007-01-01" @default.
- W210554013 modified "2023-09-25" @default.
- W210554013 title "Hardness-Randomness Tradeoffs for Bounded Depth Arithmetic Circuits." @default.
- W210554013 hasPublicationYear "2007" @default.
- W210554013 type Work @default.
- W210554013 sameAs 210554013 @default.
- W210554013 citedByCount "0" @default.
- W210554013 crossrefType "journal-article" @default.
- W210554013 hasAuthorship W210554013A5004182247 @default.
- W210554013 hasAuthorship W210554013A5013053155 @default.
- W210554013 hasAuthorship W210554013A5041051779 @default.
- W210554013 hasConcept C105795698 @default.
- W210554013 hasConcept C114614502 @default.
- W210554013 hasConcept C118615104 @default.
- W210554013 hasConcept C119599485 @default.
- W210554013 hasConcept C121332964 @default.
- W210554013 hasConcept C125112378 @default.
- W210554013 hasConcept C127413603 @default.
- W210554013 hasConcept C134146338 @default.
- W210554013 hasConcept C134306372 @default.
- W210554013 hasConcept C155920423 @default.
- W210554013 hasConcept C24890656 @default.
- W210554013 hasConcept C2775997480 @default.
- W210554013 hasConcept C2778355321 @default.
- W210554013 hasConcept C33923547 @default.
- W210554013 hasConcept C34388435 @default.
- W210554013 hasConcept C83581934 @default.
- W210554013 hasConcept C90119067 @default.
- W210554013 hasConcept C94375191 @default.
- W210554013 hasConceptScore W210554013C105795698 @default.
- W210554013 hasConceptScore W210554013C114614502 @default.
- W210554013 hasConceptScore W210554013C118615104 @default.
- W210554013 hasConceptScore W210554013C119599485 @default.
- W210554013 hasConceptScore W210554013C121332964 @default.
- W210554013 hasConceptScore W210554013C125112378 @default.
- W210554013 hasConceptScore W210554013C127413603 @default.
- W210554013 hasConceptScore W210554013C134146338 @default.
- W210554013 hasConceptScore W210554013C134306372 @default.
- W210554013 hasConceptScore W210554013C155920423 @default.
- W210554013 hasConceptScore W210554013C24890656 @default.
- W210554013 hasConceptScore W210554013C2775997480 @default.
- W210554013 hasConceptScore W210554013C2778355321 @default.
- W210554013 hasConceptScore W210554013C33923547 @default.
- W210554013 hasConceptScore W210554013C34388435 @default.
- W210554013 hasConceptScore W210554013C83581934 @default.
- W210554013 hasConceptScore W210554013C90119067 @default.
- W210554013 hasConceptScore W210554013C94375191 @default.
- W210554013 hasLocation W2105540131 @default.
- W210554013 hasOpenAccess W210554013 @default.
- W210554013 hasPrimaryLocation W2105540131 @default.
- W210554013 hasRelatedWork W1544866824 @default.
- W210554013 hasRelatedWork W1590864168 @default.
- W210554013 hasRelatedWork W1590866142 @default.
- W210554013 hasRelatedWork W1880954240 @default.
- W210554013 hasRelatedWork W1992071680 @default.
- W210554013 hasRelatedWork W2002068271 @default.
- W210554013 hasRelatedWork W2026339776 @default.
- W210554013 hasRelatedWork W2058474793 @default.
- W210554013 hasRelatedWork W2070661348 @default.
- W210554013 hasRelatedWork W2084050956 @default.
- W210554013 hasRelatedWork W2094783265 @default.
- W210554013 hasRelatedWork W2140459707 @default.
- W210554013 hasRelatedWork W2167059462 @default.
- W210554013 hasRelatedWork W2571401227 @default.
- W210554013 hasRelatedWork W2572750610 @default.
- W210554013 hasRelatedWork W2753798687 @default.
- W210554013 hasRelatedWork W2889078076 @default.
- W210554013 hasRelatedWork W2952025700 @default.
- W210554013 hasRelatedWork W3037930063 @default.
- W210554013 hasRelatedWork W346875545 @default.
- W210554013 hasVolume "14" @default.
- W210554013 isParatext "false" @default.
- W210554013 isRetracted "false" @default.
- W210554013 magId "210554013" @default.
- W210554013 workType "article" @default.