Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105561077> ?p ?o ?g. }
- W2105561077 endingPage "234" @default.
- W2105561077 startingPage "223" @default.
- W2105561077 abstract "Nitrate nitrogen losses through subsurface drainage and crop yield are determined by multiple climatic and management variables. The combined and interactive effects of these variables, however, are poorly understood. Our objective is to predict crop yield, nitrate concentration, drainage volume, and nitrate loss in subsurface drainage from a corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) rotation as a function of rainfall amount, soybean yield for the year before the corn–soybean sequence being evaluated, N source, N rate, and timing of N application in northeastern Iowa, U.S.A. Ten years of data (1994–2003) from a long-term study near Nashua, Iowa were used to develop multivariate polynomial regression equations describing these variables. The regression equations described over 87, 85, 94, 76, and 95% of variation in soybean yield, corn yield, subsurface drainage, nitrate concentration, and nitrate loss in subsurface drainage, respectively. A two-year rotation under average soil, average climatic conditions, and 125 kg N/ha application was predicted to loose 29, 37, 36, and 30 kg N/ha in subsurface drainage for early-spring swine manure, fall-applied swine manure, early-spring UAN fertilizer, and late-spring split UAN fertilizer (urea ammonium nitrate), respectively. Predicted corn yields were 10.0 and 9.7 Mg/ha for the swine manure and UAN sources applied at 125 kg N/ha. Timing of application (i.e., fall or spring) did not significantly affect corn yield. These results confirm other research suggesting that manure application can result in less nitrate leaching than UAN (e.g., 29 vs. 36 kg N/ha), and that spring application reduces nitrate leaching compared to fall application (e.g., 29 vs. 37 kg N/ha). The regression equations improve our understanding of nitrate leaching; offer a simple method to quantify potential N losses from Midwestern corn–soybean rotations under the climate, soil, and management conditions of the Nashua field experiment; and are a step toward development of easy to use N management tools. © 2007 Elsevier B.V. All rights reserved." @default.
- W2105561077 created "2016-06-24" @default.
- W2105561077 creator A5001184211 @default.
- W2105561077 creator A5001574593 @default.
- W2105561077 creator A5002026721 @default.
- W2105561077 creator A5013176442 @default.
- W2105561077 creator A5063096506 @default.
- W2105561077 creator A5066471641 @default.
- W2105561077 creator A5085254718 @default.
- W2105561077 creator A5088930032 @default.
- W2105561077 date "2007-07-01" @default.
- W2105561077 modified "2023-09-23" @default.
- W2105561077 title "Empirical analysis and prediction of nitrate loading and crop yield for corn–soybean rotations" @default.
- W2105561077 cites W1529267578 @default.
- W2105561077 cites W1968506284 @default.
- W2105561077 cites W1977238148 @default.
- W2105561077 cites W2000301221 @default.
- W2105561077 cites W2002808271 @default.
- W2105561077 cites W2003780050 @default.
- W2105561077 cites W2005691838 @default.
- W2105561077 cites W2012761572 @default.
- W2105561077 cites W2016937192 @default.
- W2105561077 cites W2017156257 @default.
- W2105561077 cites W2026175701 @default.
- W2105561077 cites W2028195802 @default.
- W2105561077 cites W2033461931 @default.
- W2105561077 cites W2035397872 @default.
- W2105561077 cites W2041340082 @default.
- W2105561077 cites W2048162567 @default.
- W2105561077 cites W2049513758 @default.
- W2105561077 cites W2050252003 @default.
- W2105561077 cites W2073817412 @default.
- W2105561077 cites W2079095280 @default.
- W2105561077 cites W2080177322 @default.
- W2105561077 cites W2080554662 @default.
- W2105561077 cites W2082200296 @default.
- W2105561077 cites W2086186042 @default.
- W2105561077 cites W2087095939 @default.
- W2105561077 cites W2091862901 @default.
- W2105561077 cites W2106477244 @default.
- W2105561077 cites W21296596 @default.
- W2105561077 cites W2135311226 @default.
- W2105561077 cites W2136574948 @default.
- W2105561077 cites W2145101088 @default.
- W2105561077 cites W2149076371 @default.
- W2105561077 cites W2159607303 @default.
- W2105561077 cites W2161147120 @default.
- W2105561077 cites W2179084257 @default.
- W2105561077 cites W4236504633 @default.
- W2105561077 cites W4249874271 @default.
- W2105561077 cites W4254546700 @default.
- W2105561077 cites W4255943158 @default.
- W2105561077 doi "https://doi.org/10.1016/j.geoderma.2007.04.007" @default.
- W2105561077 hasPublicationYear "2007" @default.
- W2105561077 type Work @default.
- W2105561077 sameAs 2105561077 @default.
- W2105561077 citedByCount "28" @default.
- W2105561077 countsByYear W21055610772012 @default.
- W2105561077 countsByYear W21055610772013 @default.
- W2105561077 countsByYear W21055610772015 @default.
- W2105561077 countsByYear W21055610772018 @default.
- W2105561077 countsByYear W21055610772020 @default.
- W2105561077 countsByYear W21055610772021 @default.
- W2105561077 crossrefType "journal-article" @default.
- W2105561077 hasAuthorship W2105561077A5001184211 @default.
- W2105561077 hasAuthorship W2105561077A5001574593 @default.
- W2105561077 hasAuthorship W2105561077A5002026721 @default.
- W2105561077 hasAuthorship W2105561077A5013176442 @default.
- W2105561077 hasAuthorship W2105561077A5063096506 @default.
- W2105561077 hasAuthorship W2105561077A5066471641 @default.
- W2105561077 hasAuthorship W2105561077A5085254718 @default.
- W2105561077 hasAuthorship W2105561077A5088930032 @default.
- W2105561077 hasBestOaLocation W21055610772 @default.
- W2105561077 hasConcept C127413603 @default.
- W2105561077 hasConcept C134121241 @default.
- W2105561077 hasConcept C137580998 @default.
- W2105561077 hasConcept C175760724 @default.
- W2105561077 hasConcept C178790620 @default.
- W2105561077 hasConcept C185592680 @default.
- W2105561077 hasConcept C191897082 @default.
- W2105561077 hasConcept C192562407 @default.
- W2105561077 hasConcept C2776384668 @default.
- W2105561077 hasConcept C39432304 @default.
- W2105561077 hasConcept C6557445 @default.
- W2105561077 hasConcept C86803240 @default.
- W2105561077 hasConcept C88463610 @default.
- W2105561077 hasConceptScore W2105561077C127413603 @default.
- W2105561077 hasConceptScore W2105561077C134121241 @default.
- W2105561077 hasConceptScore W2105561077C137580998 @default.
- W2105561077 hasConceptScore W2105561077C175760724 @default.
- W2105561077 hasConceptScore W2105561077C178790620 @default.
- W2105561077 hasConceptScore W2105561077C185592680 @default.
- W2105561077 hasConceptScore W2105561077C191897082 @default.
- W2105561077 hasConceptScore W2105561077C192562407 @default.
- W2105561077 hasConceptScore W2105561077C2776384668 @default.
- W2105561077 hasConceptScore W2105561077C39432304 @default.
- W2105561077 hasConceptScore W2105561077C6557445 @default.
- W2105561077 hasConceptScore W2105561077C86803240 @default.