Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105610724> ?p ?o ?g. }
- W2105610724 abstract "Identifying and characterizing how mixtures of exposures are associated with health endpoints is challenging. We demonstrate how classification and regression trees can be used to generate hypotheses regarding joint effects from exposure mixtures.We illustrate the approach by investigating the joint effects of CO, NO2, O3, and PM2.5 on emergency department visits for pediatric asthma in Atlanta, Georgia. Pollutant concentrations were categorized as quartiles. Days when all pollutants were in the lowest quartile were held out as the referent group (n = 131) and the remaining 3,879 days were used to estimate the regression tree. Pollutants were parameterized as dichotomous variables representing each ordinal split of the quartiles (e.g. comparing CO quartile 1 vs. CO quartiles 2-4) and considered one at a time in a Poisson case-crossover model with control for confounding. The pollutant-split resulting in the smallest P-value was selected as the first split and the dataset was partitioned accordingly. This process repeated for each subset of the data until the P-values for the remaining splits were not below a given alpha, resulting in the formation of a terminal node. We used the case-crossover model to estimate the adjusted risk ratio for each terminal node compared to the referent group, as well as the likelihood ratio test for the inclusion of the terminal nodes in the final model.The largest risk ratio corresponded to days when PM2.5 was in the highest quartile and NO2 was in the lowest two quartiles (RR: 1.10, 95% CI: 1.05, 1.16). A simultaneous Wald test for the inclusion of all terminal nodes in the model was significant, with a chi-square statistic of 34.3 (p = 0.001, with 13 degrees of freedom).Regression trees can be used to hypothesize about joint effects of exposure mixtures and may be particularly useful in the field of air pollution epidemiology for gaining a better understanding of complex multipollutant exposures." @default.
- W2105610724 created "2016-06-24" @default.
- W2105610724 creator A5000225915 @default.
- W2105610724 creator A5054342741 @default.
- W2105610724 creator A5054857534 @default.
- W2105610724 creator A5061572278 @default.
- W2105610724 creator A5075106060 @default.
- W2105610724 date "2014-03-13" @default.
- W2105610724 modified "2023-09-23" @default.
- W2105610724 title "Classification and regression trees for epidemiologic research: an air pollution example" @default.
- W2105610724 cites W118641914 @default.
- W2105610724 cites W1539593569 @default.
- W2105610724 cites W1973984300 @default.
- W2105610724 cites W1977556410 @default.
- W2105610724 cites W1993625536 @default.
- W2105610724 cites W1994966580 @default.
- W2105610724 cites W2018929849 @default.
- W2105610724 cites W2032837602 @default.
- W2105610724 cites W2036503821 @default.
- W2105610724 cites W2040254129 @default.
- W2105610724 cites W2063946399 @default.
- W2105610724 cites W2070230130 @default.
- W2105610724 cites W2070796617 @default.
- W2105610724 cites W2073345881 @default.
- W2105610724 cites W2074601501 @default.
- W2105610724 cites W2080289688 @default.
- W2105610724 cites W2086099578 @default.
- W2105610724 cites W2118921994 @default.
- W2105610724 cites W2123998733 @default.
- W2105610724 cites W2126930260 @default.
- W2105610724 cites W2138028307 @default.
- W2105610724 cites W2162154995 @default.
- W2105610724 cites W2166246487 @default.
- W2105610724 cites W2172145372 @default.
- W2105610724 cites W2243911249 @default.
- W2105610724 cites W2465300917 @default.
- W2105610724 cites W2911964244 @default.
- W2105610724 cites W4213332169 @default.
- W2105610724 cites W564695097 @default.
- W2105610724 doi "https://doi.org/10.1186/1476-069x-13-17" @default.
- W2105610724 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3977944" @default.
- W2105610724 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24625053" @default.
- W2105610724 hasPublicationYear "2014" @default.
- W2105610724 type Work @default.
- W2105610724 sameAs 2105610724 @default.
- W2105610724 citedByCount "52" @default.
- W2105610724 countsByYear W21056107242014 @default.
- W2105610724 countsByYear W21056107242015 @default.
- W2105610724 countsByYear W21056107242016 @default.
- W2105610724 countsByYear W21056107242017 @default.
- W2105610724 countsByYear W21056107242018 @default.
- W2105610724 countsByYear W21056107242019 @default.
- W2105610724 countsByYear W21056107242020 @default.
- W2105610724 countsByYear W21056107242021 @default.
- W2105610724 countsByYear W21056107242022 @default.
- W2105610724 countsByYear W21056107242023 @default.
- W2105610724 crossrefType "journal-article" @default.
- W2105610724 hasAuthorship W2105610724A5000225915 @default.
- W2105610724 hasAuthorship W2105610724A5054342741 @default.
- W2105610724 hasAuthorship W2105610724A5054857534 @default.
- W2105610724 hasAuthorship W2105610724A5061572278 @default.
- W2105610724 hasAuthorship W2105610724A5075106060 @default.
- W2105610724 hasBestOaLocation W21056107241 @default.
- W2105610724 hasConcept C100906024 @default.
- W2105610724 hasConcept C105795698 @default.
- W2105610724 hasConcept C2908647359 @default.
- W2105610724 hasConcept C33923547 @default.
- W2105610724 hasConcept C44249647 @default.
- W2105610724 hasConcept C68443243 @default.
- W2105610724 hasConcept C71924100 @default.
- W2105610724 hasConcept C73269764 @default.
- W2105610724 hasConcept C77350462 @default.
- W2105610724 hasConcept C99454951 @default.
- W2105610724 hasConceptScore W2105610724C100906024 @default.
- W2105610724 hasConceptScore W2105610724C105795698 @default.
- W2105610724 hasConceptScore W2105610724C2908647359 @default.
- W2105610724 hasConceptScore W2105610724C33923547 @default.
- W2105610724 hasConceptScore W2105610724C44249647 @default.
- W2105610724 hasConceptScore W2105610724C68443243 @default.
- W2105610724 hasConceptScore W2105610724C71924100 @default.
- W2105610724 hasConceptScore W2105610724C73269764 @default.
- W2105610724 hasConceptScore W2105610724C77350462 @default.
- W2105610724 hasConceptScore W2105610724C99454951 @default.
- W2105610724 hasIssue "1" @default.
- W2105610724 hasLocation W21056107241 @default.
- W2105610724 hasLocation W21056107242 @default.
- W2105610724 hasLocation W21056107243 @default.
- W2105610724 hasLocation W21056107244 @default.
- W2105610724 hasOpenAccess W2105610724 @default.
- W2105610724 hasPrimaryLocation W21056107241 @default.
- W2105610724 hasRelatedWork W2000744621 @default.
- W2105610724 hasRelatedWork W2076873241 @default.
- W2105610724 hasRelatedWork W2100171046 @default.
- W2105610724 hasRelatedWork W2116166733 @default.
- W2105610724 hasRelatedWork W2150462512 @default.
- W2105610724 hasRelatedWork W2186253268 @default.
- W2105610724 hasRelatedWork W2792011442 @default.
- W2105610724 hasRelatedWork W2809648414 @default.
- W2105610724 hasRelatedWork W3041987031 @default.
- W2105610724 hasRelatedWork W3123837351 @default.