Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105724384> ?p ?o ?g. }
- W2105724384 endingPage "11" @default.
- W2105724384 startingPage "1" @default.
- W2105724384 abstract "Tumour detection, classification, and quantification in positron emission tomography (PET) imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI) approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs), as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results." @default.
- W2105724384 created "2016-06-24" @default.
- W2105724384 creator A5007891293 @default.
- W2105724384 creator A5042805664 @default.
- W2105724384 creator A5070246091 @default.
- W2105724384 creator A5091511508 @default.
- W2105724384 date "2010-01-01" @default.
- W2105724384 modified "2023-10-10" @default.
- W2105724384 title "Artificial Neural Network-Based System for PET Volume Segmentation" @default.
- W2105724384 cites W1970800786 @default.
- W2105724384 cites W1973016768 @default.
- W2105724384 cites W1992444624 @default.
- W2105724384 cites W2006544565 @default.
- W2105724384 cites W2013848746 @default.
- W2105724384 cites W2016692045 @default.
- W2105724384 cites W2043382734 @default.
- W2105724384 cites W2051812123 @default.
- W2105724384 cites W2062420712 @default.
- W2105724384 cites W2064468293 @default.
- W2105724384 cites W2065542681 @default.
- W2105724384 cites W2077136517 @default.
- W2105724384 cites W2088286662 @default.
- W2105724384 cites W2090428529 @default.
- W2105724384 cites W2100858680 @default.
- W2105724384 cites W2107878631 @default.
- W2105724384 cites W2109448822 @default.
- W2105724384 cites W2115051059 @default.
- W2105724384 cites W2132984323 @default.
- W2105724384 cites W2133003941 @default.
- W2105724384 cites W2133059825 @default.
- W2105724384 cites W2137865578 @default.
- W2105724384 cites W2139799858 @default.
- W2105724384 cites W2161662877 @default.
- W2105724384 cites W2169698737 @default.
- W2105724384 cites W2540061855 @default.
- W2105724384 cites W2615412239 @default.
- W2105724384 cites W2911546748 @default.
- W2105724384 cites W2107265184 @default.
- W2105724384 doi "https://doi.org/10.1155/2010/105610" @default.
- W2105724384 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2948894" @default.
- W2105724384 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20936152" @default.
- W2105724384 hasPublicationYear "2010" @default.
- W2105724384 type Work @default.
- W2105724384 sameAs 2105724384 @default.
- W2105724384 citedByCount "29" @default.
- W2105724384 countsByYear W21057243842012 @default.
- W2105724384 countsByYear W21057243842013 @default.
- W2105724384 countsByYear W21057243842014 @default.
- W2105724384 countsByYear W21057243842015 @default.
- W2105724384 countsByYear W21057243842016 @default.
- W2105724384 countsByYear W21057243842017 @default.
- W2105724384 countsByYear W21057243842018 @default.
- W2105724384 countsByYear W21057243842019 @default.
- W2105724384 countsByYear W21057243842020 @default.
- W2105724384 countsByYear W21057243842021 @default.
- W2105724384 countsByYear W21057243842022 @default.
- W2105724384 countsByYear W21057243842023 @default.
- W2105724384 crossrefType "journal-article" @default.
- W2105724384 hasAuthorship W2105724384A5007891293 @default.
- W2105724384 hasAuthorship W2105724384A5042805664 @default.
- W2105724384 hasAuthorship W2105724384A5070246091 @default.
- W2105724384 hasAuthorship W2105724384A5091511508 @default.
- W2105724384 hasBestOaLocation W21057243841 @default.
- W2105724384 hasConcept C115961682 @default.
- W2105724384 hasConcept C119857082 @default.
- W2105724384 hasConcept C153180895 @default.
- W2105724384 hasConcept C154945302 @default.
- W2105724384 hasConcept C191178318 @default.
- W2105724384 hasConcept C31601959 @default.
- W2105724384 hasConcept C41008148 @default.
- W2105724384 hasConcept C47432892 @default.
- W2105724384 hasConcept C50644808 @default.
- W2105724384 hasConcept C73555534 @default.
- W2105724384 hasConcept C89600930 @default.
- W2105724384 hasConceptScore W2105724384C115961682 @default.
- W2105724384 hasConceptScore W2105724384C119857082 @default.
- W2105724384 hasConceptScore W2105724384C153180895 @default.
- W2105724384 hasConceptScore W2105724384C154945302 @default.
- W2105724384 hasConceptScore W2105724384C191178318 @default.
- W2105724384 hasConceptScore W2105724384C31601959 @default.
- W2105724384 hasConceptScore W2105724384C41008148 @default.
- W2105724384 hasConceptScore W2105724384C47432892 @default.
- W2105724384 hasConceptScore W2105724384C50644808 @default.
- W2105724384 hasConceptScore W2105724384C73555534 @default.
- W2105724384 hasConceptScore W2105724384C89600930 @default.
- W2105724384 hasFunder F4320320924 @default.
- W2105724384 hasLocation W21057243841 @default.
- W2105724384 hasLocation W21057243842 @default.
- W2105724384 hasLocation W21057243843 @default.
- W2105724384 hasLocation W21057243844 @default.
- W2105724384 hasLocation W21057243845 @default.
- W2105724384 hasLocation W21057243846 @default.
- W2105724384 hasLocation W21057243847 @default.
- W2105724384 hasOpenAccess W2105724384 @default.
- W2105724384 hasPrimaryLocation W21057243841 @default.
- W2105724384 hasRelatedWork W1542224353 @default.
- W2105724384 hasRelatedWork W1661087619 @default.
- W2105724384 hasRelatedWork W2066589291 @default.