Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105744800> ?p ?o ?g. }
- W2105744800 endingPage "325" @default.
- W2105744800 startingPage "316" @default.
- W2105744800 abstract "Life cycle assessment (LCA) calculates the environmental impact of a product over its entire life cycle. Uncertainty analysis is an important aspect in LCA, and is usually performed using Monte Carlo sampling. In this study, Monte Carlo sampling, Latin hypercube sampling, quasi Monte Carlo sampling, analytical uncertainty propagation and fuzzy interval arithmetic were compared based on e.g. convergence rate and output statistics. Each method was tested on three LCA case studies, which differed in size and behaviour. Uncertainty propagation in LCA using a sampling method leads to more (directly) usable information compared to fuzzy interval arithmetic or analytical uncertainty propagation. Latin hypercube and quasi Monte Carlo sampling provide more accuracy in determining the sample mean than Monte Carlo sampling and can even converge faster than Monte Carlo sampling for some of the case studies discussed in this paper." @default.
- W2105744800 created "2016-06-24" @default.
- W2105744800 creator A5002330623 @default.
- W2105744800 creator A5011004946 @default.
- W2105744800 creator A5011087396 @default.
- W2105744800 creator A5070552780 @default.
- W2105744800 date "2014-12-01" @default.
- W2105744800 modified "2023-10-12" @default.
- W2105744800 title "Methods for uncertainty propagation in life cycle assessment" @default.
- W2105744800 cites W164981165 @default.
- W2105744800 cites W1907250805 @default.
- W2105744800 cites W1972095693 @default.
- W2105744800 cites W1974461577 @default.
- W2105744800 cites W1979230188 @default.
- W2105744800 cites W1980040005 @default.
- W2105744800 cites W1984270030 @default.
- W2105744800 cites W1997747544 @default.
- W2105744800 cites W2006772343 @default.
- W2105744800 cites W2009707624 @default.
- W2105744800 cites W2018064580 @default.
- W2105744800 cites W2022223144 @default.
- W2105744800 cites W2028158304 @default.
- W2105744800 cites W2028211105 @default.
- W2105744800 cites W2031874479 @default.
- W2105744800 cites W2039053974 @default.
- W2105744800 cites W2048074138 @default.
- W2105744800 cites W2051203581 @default.
- W2105744800 cites W2054655708 @default.
- W2105744800 cites W2056145269 @default.
- W2105744800 cites W2075640383 @default.
- W2105744800 cites W2080197642 @default.
- W2105744800 cites W2081086469 @default.
- W2105744800 cites W2084175175 @default.
- W2105744800 cites W2088765131 @default.
- W2105744800 cites W2093625674 @default.
- W2105744800 cites W2094175783 @default.
- W2105744800 cites W2102722927 @default.
- W2105744800 cites W2128611983 @default.
- W2105744800 cites W2148922344 @default.
- W2105744800 cites W2151084831 @default.
- W2105744800 cites W2154307847 @default.
- W2105744800 cites W2159940429 @default.
- W2105744800 cites W2166164867 @default.
- W2105744800 cites W2170100366 @default.
- W2105744800 cites W4248367463 @default.
- W2105744800 cites W432174516 @default.
- W2105744800 doi "https://doi.org/10.1016/j.envsoft.2014.10.006" @default.
- W2105744800 hasPublicationYear "2014" @default.
- W2105744800 type Work @default.
- W2105744800 sameAs 2105744800 @default.
- W2105744800 citedByCount "89" @default.
- W2105744800 countsByYear W21057448002015 @default.
- W2105744800 countsByYear W21057448002016 @default.
- W2105744800 countsByYear W21057448002017 @default.
- W2105744800 countsByYear W21057448002018 @default.
- W2105744800 countsByYear W21057448002019 @default.
- W2105744800 countsByYear W21057448002020 @default.
- W2105744800 countsByYear W21057448002021 @default.
- W2105744800 countsByYear W21057448002022 @default.
- W2105744800 countsByYear W21057448002023 @default.
- W2105744800 crossrefType "journal-article" @default.
- W2105744800 hasAuthorship W2105744800A5002330623 @default.
- W2105744800 hasAuthorship W2105744800A5011004946 @default.
- W2105744800 hasAuthorship W2105744800A5011087396 @default.
- W2105744800 hasAuthorship W2105744800A5070552780 @default.
- W2105744800 hasConcept C105795698 @default.
- W2105744800 hasConcept C106131492 @default.
- W2105744800 hasConcept C111350023 @default.
- W2105744800 hasConcept C123614077 @default.
- W2105744800 hasConcept C13153151 @default.
- W2105744800 hasConcept C132725507 @default.
- W2105744800 hasConcept C140779682 @default.
- W2105744800 hasConcept C170593435 @default.
- W2105744800 hasConcept C177803969 @default.
- W2105744800 hasConcept C187192777 @default.
- W2105744800 hasConcept C19499675 @default.
- W2105744800 hasConcept C204493344 @default.
- W2105744800 hasConcept C20820323 @default.
- W2105744800 hasConcept C31972630 @default.
- W2105744800 hasConcept C33923547 @default.
- W2105744800 hasConcept C41008148 @default.
- W2105744800 hasConcept C52740198 @default.
- W2105744800 hasConceptScore W2105744800C105795698 @default.
- W2105744800 hasConceptScore W2105744800C106131492 @default.
- W2105744800 hasConceptScore W2105744800C111350023 @default.
- W2105744800 hasConceptScore W2105744800C123614077 @default.
- W2105744800 hasConceptScore W2105744800C13153151 @default.
- W2105744800 hasConceptScore W2105744800C132725507 @default.
- W2105744800 hasConceptScore W2105744800C140779682 @default.
- W2105744800 hasConceptScore W2105744800C170593435 @default.
- W2105744800 hasConceptScore W2105744800C177803969 @default.
- W2105744800 hasConceptScore W2105744800C187192777 @default.
- W2105744800 hasConceptScore W2105744800C19499675 @default.
- W2105744800 hasConceptScore W2105744800C204493344 @default.
- W2105744800 hasConceptScore W2105744800C20820323 @default.
- W2105744800 hasConceptScore W2105744800C31972630 @default.
- W2105744800 hasConceptScore W2105744800C33923547 @default.
- W2105744800 hasConceptScore W2105744800C41008148 @default.