Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105865312> ?p ?o ?g. }
- W2105865312 abstract "Provable security refers to the ability to give rigorous mathematical proofs towards the security of a cryptographic construction; in some sense one of the best possible security guarantees one can attain. These proofs are most often given through so-called reductions to a simpler construction or to some well-studied number-theoretic assumption. This thesis deals with two aspects of such reductions.First, since a reduction may be difficult to obtain, many reductions for widely-used signature and encryption schemes are conducted in a model that idealizes some underlying building block of the scheme, for example by replacing a hash function with a truly random function. With these reductions in idealized models, it is difficult to compare requirements of cryptographic schemes because the idealization introduces all desired properties simultaneously and it is inexplicit which ones are used and to what extent. This complicates practical considerations when choosing from multiple candidate constructions for the same task.We develop a novel mechanism to relate schemes proven in idealized models. In this thesis, we present a reductionist paradigm that allows meaningful comparisons of constructions in idealized models with respect to the idealized part. Some of the idealized constructions considered here are the well-known compression-function constructions from blockciphers by Preneel, Govaerts, and Vandewalle (PGV; CRYPTO, 1993), and the twin ElGamal encryption scheme by Cash, Kiltz, and Shoup (Journal of Cryptology, 2009). Our main results show that the random oracle of the twin ElGamal encryption scheme reduces to the random oracle of the regular ElGamal encryption scheme, the PGV constructions fall into two groups, and the so-called double-block-length constructions reduce to one of the PGV constructions with respect to their ideal cipher.We can thus conclude that the PGV constructions are essentially equivalent within their respective groups and that double-block-length constructions are strictly superior, not only because of their increased key length. Similarly, the regular ElGamal scheme can be replaced by the twin ElGamal scheme (keeping in mind the reduction's tightness), even though the proofs are in an idealized model. These latter results greatly help designers and implementers of practical cryptographic constructions to select the better of two (or more) seemingly equivalent options. Ideal-model reducibility as a comparison tool is applicable to any two constructions whose proof is in an idealized model.The second aspect of reductions we study in this thesis relates to the absence of reductions. Sometimes, insurmountable obstacles in finding a reduction result in a proof that reductions of some kind cannot exists at all. In that case, it is particularly important to carefully understand what the non-existent reductions look like---since, perhaps, a slightly different reduction is feasible.We develop means that allow us to better understand existing reductions in the literature. This thesis presents a new framework, akin to the one by Reingold, Trevisan, and Vadhan (TCC, 2004), for classifying reductions in a more fine-grained and more systematic way.The new framework clarifies the role of efficiency of adversaries and primitives within reductions, covers meta-reduction separations, and provides new insights on the power of relativizing reductions. Consequently, a classification within the new framework clearly points out avenues to circumvent existing impossibility results and enables an assessment of their strength. The generality of the framework permits classification of a large body of existing reductions, but it is easily extensible to include further properties." @default.
- W2105865312 created "2016-06-24" @default.
- W2105865312 creator A5014669295 @default.
- W2105865312 date "2014-10-07" @default.
- W2105865312 modified "2023-09-27" @default.
- W2105865312 title "Cryptographic Reductions: Classification and Applications to Ideal Models" @default.
- W2105865312 cites W115629558 @default.
- W2105865312 cites W1178441799 @default.
- W2105865312 cites W122561124 @default.
- W2105865312 cites W133489322 @default.
- W2105865312 cites W1484557542 @default.
- W2105865312 cites W1485714558 @default.
- W2105865312 cites W1493465382 @default.
- W2105865312 cites W1499074627 @default.
- W2105865312 cites W1499996761 @default.
- W2105865312 cites W1504072884 @default.
- W2105865312 cites W1505322521 @default.
- W2105865312 cites W1510154334 @default.
- W2105865312 cites W1512498994 @default.
- W2105865312 cites W152191533 @default.
- W2105865312 cites W1522447864 @default.
- W2105865312 cites W1526778951 @default.
- W2105865312 cites W1536816541 @default.
- W2105865312 cites W1547189451 @default.
- W2105865312 cites W1548130906 @default.
- W2105865312 cites W1550137840 @default.
- W2105865312 cites W1552695147 @default.
- W2105865312 cites W1554241476 @default.
- W2105865312 cites W1554865288 @default.
- W2105865312 cites W1558353365 @default.
- W2105865312 cites W1558423924 @default.
- W2105865312 cites W1559365371 @default.
- W2105865312 cites W1565415113 @default.
- W2105865312 cites W1566256504 @default.
- W2105865312 cites W1574186939 @default.
- W2105865312 cites W1589399207 @default.
- W2105865312 cites W1597699498 @default.
- W2105865312 cites W1601106539 @default.
- W2105865312 cites W1601391931 @default.
- W2105865312 cites W1625658248 @default.
- W2105865312 cites W1689385595 @default.
- W2105865312 cites W16894843 @default.
- W2105865312 cites W177462532 @default.
- W2105865312 cites W1810651009 @default.
- W2105865312 cites W1817126074 @default.
- W2105865312 cites W1832113522 @default.
- W2105865312 cites W1863270349 @default.
- W2105865312 cites W1870778496 @default.
- W2105865312 cites W1872817980 @default.
- W2105865312 cites W1880955573 @default.
- W2105865312 cites W1892798954 @default.
- W2105865312 cites W1939171670 @default.
- W2105865312 cites W1996124721 @default.
- W2105865312 cites W1996171547 @default.
- W2105865312 cites W2002930326 @default.
- W2105865312 cites W2004881597 @default.
- W2105865312 cites W2005903962 @default.
- W2105865312 cites W2007585625 @default.
- W2105865312 cites W2014239329 @default.
- W2105865312 cites W2015880590 @default.
- W2105865312 cites W2027528470 @default.
- W2105865312 cites W2052267638 @default.
- W2105865312 cites W2067109782 @default.
- W2105865312 cites W2067318305 @default.
- W2105865312 cites W2074594718 @default.
- W2105865312 cites W2095708839 @default.
- W2105865312 cites W2106583429 @default.
- W2105865312 cites W2107324709 @default.
- W2105865312 cites W2107818289 @default.
- W2105865312 cites W2108475361 @default.
- W2105865312 cites W2117362057 @default.
- W2105865312 cites W2120154759 @default.
- W2105865312 cites W2125495920 @default.
- W2105865312 cites W2126661026 @default.
- W2105865312 cites W2132419708 @default.
- W2105865312 cites W2134679597 @default.
- W2105865312 cites W2143126652 @default.
- W2105865312 cites W2143490740 @default.
- W2105865312 cites W2145006563 @default.
- W2105865312 cites W2149096890 @default.
- W2105865312 cites W2155690458 @default.
- W2105865312 cites W2157679418 @default.
- W2105865312 cites W2158276883 @default.
- W2105865312 cites W2162653919 @default.
- W2105865312 cites W2168130511 @default.
- W2105865312 cites W2177399963 @default.
- W2105865312 cites W2230325614 @default.
- W2105865312 cites W2280984960 @default.
- W2105865312 cites W2591914728 @default.
- W2105865312 cites W2612691132 @default.
- W2105865312 cites W50116563 @default.
- W2105865312 cites W58062620 @default.
- W2105865312 cites W75861488 @default.
- W2105865312 cites W2593546981 @default.
- W2105865312 cites W2610806740 @default.
- W2105865312 cites W2611357843 @default.
- W2105865312 cites W2613557339 @default.
- W2105865312 hasPublicationYear "2014" @default.
- W2105865312 type Work @default.
- W2105865312 sameAs 2105865312 @default.