Matches in SemOpenAlex for { <https://semopenalex.org/work/W2105998101> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2105998101 endingPage "321" @default.
- W2105998101 startingPage "311" @default.
- W2105998101 abstract "Problem statement: The Least Squares (LS) method has been the most popular technique for estimating the parameters of a model due to its optimal properties and ease of computation. LS estimated regression may be seriously disturbed by multicollinearity which is a near linear dependency between two or more explanatory variables in the regression models. Even though LS estimates are unbiased in the presence of multicollinearity, they will be imprecise with inflated standard errors of the estimated regression coefficients. It is now evident that the multiple high leverage points which are the outliers in the X-direction may be the prime source of collinearity-influential observations. Approach: In this study, we had proposed robust procedures for the estimation of regression parameters in the presence of multiple high leverage points which cause multicollinearity problems. This procedure utilized mainly a one step reweighted least square where the initial weight functions were determined by the Diagnostic-Robust Generalized Potentials (DRGP). Here, we had incorporated the DRGP with different types of robust methods to down weight the multiple high leverage points which lead to reducing the effects of multicollinearity. The new proposed methods were called GM-DRGP-L1, GM-DRGP-LTS, M-DRGP, MM-DRGP, DRGP-MM. Some indicators had been defined to obtain the best performance of robust method among the existing and new introduced methods. Results: The empirical study indicated that the DRGP-MM emerge to be more efficient and more reliable than other methods, followed by the GM-DRGP-LTS as they were able to reduce the most effect of multicollinearity. The results seemed to suggest that the DRGP-MM and the GM-DRGP-LTS offers a substantial improvement over other methods for correcting the problems of high leverage points enhancing multicollinearity. Conclusion/Recommendations: In order to solve the multicollinearity problems which are mainly due to the multiple high leverage points, two proposed robust methods, DRGP-MM and the GM-DRGP-LTS, were recommended." @default.
- W2105998101 created "2016-06-24" @default.
- W2105998101 creator A5000700306 @default.
- W2105998101 creator A5069583794 @default.
- W2105998101 date "2009-04-01" @default.
- W2105998101 modified "2023-10-10" @default.
- W2105998101 title "Robust Estimations as a Remedy for Multicollinearity Caused by Multiple High Leverage Points" @default.
- W2105998101 cites W149129625 @default.
- W2105998101 cites W1979344365 @default.
- W2105998101 cites W1983350937 @default.
- W2105998101 cites W1989898472 @default.
- W2105998101 cites W1991236802 @default.
- W2105998101 cites W2011627547 @default.
- W2105998101 cites W2012266776 @default.
- W2105998101 cites W2021917714 @default.
- W2105998101 cites W2033894760 @default.
- W2105998101 cites W2048997388 @default.
- W2105998101 cites W2065742895 @default.
- W2105998101 cites W2068383009 @default.
- W2105998101 cites W2076061146 @default.
- W2105998101 cites W2129249398 @default.
- W2105998101 cites W2146225536 @default.
- W2105998101 cites W2152701363 @default.
- W2105998101 cites W2795411470 @default.
- W2105998101 cites W2796901959 @default.
- W2105998101 cites W2797021786 @default.
- W2105998101 cites W591076336 @default.
- W2105998101 cites W2100561985 @default.
- W2105998101 doi "https://doi.org/10.3844/jmssp.2009.311.321" @default.
- W2105998101 hasPublicationYear "2009" @default.
- W2105998101 type Work @default.
- W2105998101 sameAs 2105998101 @default.
- W2105998101 citedByCount "27" @default.
- W2105998101 countsByYear W21059981012012 @default.
- W2105998101 countsByYear W21059981012013 @default.
- W2105998101 countsByYear W21059981012014 @default.
- W2105998101 countsByYear W21059981012015 @default.
- W2105998101 countsByYear W21059981012017 @default.
- W2105998101 countsByYear W21059981012019 @default.
- W2105998101 countsByYear W21059981012020 @default.
- W2105998101 countsByYear W21059981012021 @default.
- W2105998101 countsByYear W21059981012022 @default.
- W2105998101 countsByYear W21059981012023 @default.
- W2105998101 crossrefType "journal-article" @default.
- W2105998101 hasAuthorship W2105998101A5000700306 @default.
- W2105998101 hasAuthorship W2105998101A5069583794 @default.
- W2105998101 hasBestOaLocation W21059981011 @default.
- W2105998101 hasConcept C105795698 @default.
- W2105998101 hasConcept C149782125 @default.
- W2105998101 hasConcept C152877465 @default.
- W2105998101 hasConcept C153083717 @default.
- W2105998101 hasConcept C189285262 @default.
- W2105998101 hasConcept C33923547 @default.
- W2105998101 hasConceptScore W2105998101C105795698 @default.
- W2105998101 hasConceptScore W2105998101C149782125 @default.
- W2105998101 hasConceptScore W2105998101C152877465 @default.
- W2105998101 hasConceptScore W2105998101C153083717 @default.
- W2105998101 hasConceptScore W2105998101C189285262 @default.
- W2105998101 hasConceptScore W2105998101C33923547 @default.
- W2105998101 hasIssue "4" @default.
- W2105998101 hasLocation W21059981011 @default.
- W2105998101 hasLocation W21059981012 @default.
- W2105998101 hasOpenAccess W2105998101 @default.
- W2105998101 hasPrimaryLocation W21059981011 @default.
- W2105998101 hasRelatedWork W111527664 @default.
- W2105998101 hasRelatedWork W2103688278 @default.
- W2105998101 hasRelatedWork W2751101869 @default.
- W2105998101 hasRelatedWork W2944682914 @default.
- W2105998101 hasRelatedWork W3029348460 @default.
- W2105998101 hasRelatedWork W3133529159 @default.
- W2105998101 hasRelatedWork W43628172 @default.
- W2105998101 hasRelatedWork W4386190293 @default.
- W2105998101 hasRelatedWork W939718081 @default.
- W2105998101 hasRelatedWork W2466166334 @default.
- W2105998101 hasVolume "5" @default.
- W2105998101 isParatext "false" @default.
- W2105998101 isRetracted "false" @default.
- W2105998101 magId "2105998101" @default.
- W2105998101 workType "article" @default.