Matches in SemOpenAlex for { <https://semopenalex.org/work/W2106017906> ?p ?o ?g. }
- W2106017906 endingPage "1258" @default.
- W2106017906 startingPage "1241" @default.
- W2106017906 abstract "A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by learned threshold relaxation; (2) removes spurious segments by learning to eliminate deletion candidate strands; and (3) enforces consistency in the joint space of learned vascular graph corrections through consistency learning. Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with >800(3) voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5-21% and strand elimination performance by 18-57%. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations." @default.
- W2106017906 created "2016-06-24" @default.
- W2106017906 creator A5010434115 @default.
- W2106017906 creator A5013734827 @default.
- W2106017906 creator A5028675758 @default.
- W2106017906 creator A5059720409 @default.
- W2106017906 date "2012-08-01" @default.
- W2106017906 modified "2023-10-14" @default.
- W2106017906 title "Vectorization of optically sectioned brain microvasculature: Learning aids completion of vascular graphs by connecting gaps and deleting open-ended segments" @default.
- W2106017906 cites W1528361845 @default.
- W2106017906 cites W1545791100 @default.
- W2106017906 cites W1967574983 @default.
- W2106017906 cites W1974954013 @default.
- W2106017906 cites W1988790447 @default.
- W2106017906 cites W1997337116 @default.
- W2106017906 cites W1997882069 @default.
- W2106017906 cites W2018145976 @default.
- W2106017906 cites W2026461867 @default.
- W2106017906 cites W2026981426 @default.
- W2106017906 cites W2027931360 @default.
- W2106017906 cites W2031654716 @default.
- W2106017906 cites W2035425589 @default.
- W2106017906 cites W2043258671 @default.
- W2106017906 cites W2052266765 @default.
- W2106017906 cites W2053019147 @default.
- W2106017906 cites W2071646331 @default.
- W2106017906 cites W2075058103 @default.
- W2106017906 cites W2099656082 @default.
- W2106017906 cites W2105436594 @default.
- W2106017906 cites W2113010634 @default.
- W2106017906 cites W2113231609 @default.
- W2106017906 cites W2114104729 @default.
- W2106017906 cites W2129018774 @default.
- W2106017906 cites W2145023731 @default.
- W2106017906 cites W2151003399 @default.
- W2106017906 cites W2160524286 @default.
- W2106017906 cites W2160744602 @default.
- W2106017906 cites W2162266981 @default.
- W2106017906 cites W2164390922 @default.
- W2106017906 cites W2166572577 @default.
- W2106017906 cites W2168005337 @default.
- W2106017906 cites W2169118010 @default.
- W2106017906 cites W2170568150 @default.
- W2106017906 cites W4212883601 @default.
- W2106017906 doi "https://doi.org/10.1016/j.media.2012.06.004" @default.
- W2106017906 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3443315" @default.
- W2106017906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22854035" @default.
- W2106017906 hasPublicationYear "2012" @default.
- W2106017906 type Work @default.
- W2106017906 sameAs 2106017906 @default.
- W2106017906 citedByCount "29" @default.
- W2106017906 countsByYear W21060179062013 @default.
- W2106017906 countsByYear W21060179062014 @default.
- W2106017906 countsByYear W21060179062015 @default.
- W2106017906 countsByYear W21060179062016 @default.
- W2106017906 countsByYear W21060179062017 @default.
- W2106017906 countsByYear W21060179062018 @default.
- W2106017906 countsByYear W21060179062019 @default.
- W2106017906 countsByYear W21060179062020 @default.
- W2106017906 countsByYear W21060179062021 @default.
- W2106017906 countsByYear W21060179062023 @default.
- W2106017906 crossrefType "journal-article" @default.
- W2106017906 hasAuthorship W2106017906A5010434115 @default.
- W2106017906 hasAuthorship W2106017906A5013734827 @default.
- W2106017906 hasAuthorship W2106017906A5028675758 @default.
- W2106017906 hasAuthorship W2106017906A5059720409 @default.
- W2106017906 hasBestOaLocation W21060179062 @default.
- W2106017906 hasConcept C11413529 @default.
- W2106017906 hasConcept C119857082 @default.
- W2106017906 hasConcept C132525143 @default.
- W2106017906 hasConcept C136886441 @default.
- W2106017906 hasConcept C144024400 @default.
- W2106017906 hasConcept C153180895 @default.
- W2106017906 hasConcept C154945302 @default.
- W2106017906 hasConcept C177264268 @default.
- W2106017906 hasConcept C17744445 @default.
- W2106017906 hasConcept C19165224 @default.
- W2106017906 hasConcept C199360897 @default.
- W2106017906 hasConcept C199539241 @default.
- W2106017906 hasConcept C2776359362 @default.
- W2106017906 hasConcept C2776436953 @default.
- W2106017906 hasConcept C41008148 @default.
- W2106017906 hasConcept C54170458 @default.
- W2106017906 hasConcept C80444323 @default.
- W2106017906 hasConcept C89600930 @default.
- W2106017906 hasConcept C94625758 @default.
- W2106017906 hasConcept C97256817 @default.
- W2106017906 hasConceptScore W2106017906C11413529 @default.
- W2106017906 hasConceptScore W2106017906C119857082 @default.
- W2106017906 hasConceptScore W2106017906C132525143 @default.
- W2106017906 hasConceptScore W2106017906C136886441 @default.
- W2106017906 hasConceptScore W2106017906C144024400 @default.
- W2106017906 hasConceptScore W2106017906C153180895 @default.
- W2106017906 hasConceptScore W2106017906C154945302 @default.
- W2106017906 hasConceptScore W2106017906C177264268 @default.
- W2106017906 hasConceptScore W2106017906C17744445 @default.
- W2106017906 hasConceptScore W2106017906C19165224 @default.
- W2106017906 hasConceptScore W2106017906C199360897 @default.