Matches in SemOpenAlex for { <https://semopenalex.org/work/W2106351473> ?p ?o ?g. }
- W2106351473 endingPage "455" @default.
- W2106351473 startingPage "438" @default.
- W2106351473 abstract "Recently, there has been an increased interest in modeling the association between aggregate disease counts and environmental exposures measured, for example via air pollution monitors, at point locations. This paper has two aims: first, we develop a model for such data in order to avoid ecological bias; second, we illustrate that modeling the exposure surface and estimating exposures may lead to bias in estimation of health effects. Design issues are also briefly considered, in particular the loss of information in moving from individual to ecological data, and the at-risk populations to consider in relation to the pollution monitor locations. The approach is investigated initially through simulations, and is then applied to a study of the association between mortality in those over 65 in the year 2000 and the previous year's SO2, in London. We conclude that the use of the proposed model can provide valid inference, but the use of estimated exposures should be carried out with great caution." @default.
- W2106351473 created "2016-06-24" @default.
- W2106351473 creator A5024716316 @default.
- W2106351473 date "2005-12-20" @default.
- W2106351473 modified "2023-10-14" @default.
- W2106351473 title "Health-exposure modeling and the ecological fallacy" @default.
- W2106351473 cites W1528905581 @default.
- W2106351473 cites W1937563731 @default.
- W2106351473 cites W1976165667 @default.
- W2106351473 cites W2004014822 @default.
- W2106351473 cites W2015290609 @default.
- W2106351473 cites W2017650294 @default.
- W2106351473 cites W2026150616 @default.
- W2106351473 cites W2031691380 @default.
- W2106351473 cites W2045027123 @default.
- W2106351473 cites W2053255375 @default.
- W2106351473 cites W2080811022 @default.
- W2106351473 cites W2104492424 @default.
- W2106351473 cites W2110394927 @default.
- W2106351473 cites W2116243905 @default.
- W2106351473 cites W2121433202 @default.
- W2106351473 cites W2125471074 @default.
- W2106351473 cites W2129393831 @default.
- W2106351473 cites W2131305454 @default.
- W2106351473 cites W2138465479 @default.
- W2106351473 cites W2141757484 @default.
- W2106351473 cites W2155669879 @default.
- W2106351473 cites W2156932411 @default.
- W2106351473 cites W2157785238 @default.
- W2106351473 cites W2158461995 @default.
- W2106351473 cites W2170006061 @default.
- W2106351473 cites W2314420155 @default.
- W2106351473 cites W2417986957 @default.
- W2106351473 cites W307071570 @default.
- W2106351473 cites W977294049 @default.
- W2106351473 doi "https://doi.org/10.1093/biostatistics/kxj017" @default.
- W2106351473 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16428258" @default.
- W2106351473 hasPublicationYear "2005" @default.
- W2106351473 type Work @default.
- W2106351473 sameAs 2106351473 @default.
- W2106351473 citedByCount "86" @default.
- W2106351473 countsByYear W21063514732012 @default.
- W2106351473 countsByYear W21063514732013 @default.
- W2106351473 countsByYear W21063514732014 @default.
- W2106351473 countsByYear W21063514732015 @default.
- W2106351473 countsByYear W21063514732016 @default.
- W2106351473 countsByYear W21063514732017 @default.
- W2106351473 countsByYear W21063514732018 @default.
- W2106351473 countsByYear W21063514732019 @default.
- W2106351473 countsByYear W21063514732020 @default.
- W2106351473 countsByYear W21063514732021 @default.
- W2106351473 countsByYear W21063514732022 @default.
- W2106351473 countsByYear W21063514732023 @default.
- W2106351473 crossrefType "journal-article" @default.
- W2106351473 hasAuthorship W2106351473A5024716316 @default.
- W2106351473 hasBestOaLocation W21063514731 @default.
- W2106351473 hasConcept C105795698 @default.
- W2106351473 hasConcept C111472728 @default.
- W2106351473 hasConcept C138885662 @default.
- W2106351473 hasConcept C142853389 @default.
- W2106351473 hasConcept C149782125 @default.
- W2106351473 hasConcept C154945302 @default.
- W2106351473 hasConcept C15744967 @default.
- W2106351473 hasConcept C158600405 @default.
- W2106351473 hasConcept C162324750 @default.
- W2106351473 hasConcept C187736073 @default.
- W2106351473 hasConcept C18903297 @default.
- W2106351473 hasConcept C2776214188 @default.
- W2106351473 hasConcept C2781035248 @default.
- W2106351473 hasConcept C2987857752 @default.
- W2106351473 hasConcept C33923547 @default.
- W2106351473 hasConcept C39432304 @default.
- W2106351473 hasConcept C41008148 @default.
- W2106351473 hasConcept C542102704 @default.
- W2106351473 hasConcept C71924100 @default.
- W2106351473 hasConcept C86803240 @default.
- W2106351473 hasConcept C96250715 @default.
- W2106351473 hasConcept C99454951 @default.
- W2106351473 hasConceptScore W2106351473C105795698 @default.
- W2106351473 hasConceptScore W2106351473C111472728 @default.
- W2106351473 hasConceptScore W2106351473C138885662 @default.
- W2106351473 hasConceptScore W2106351473C142853389 @default.
- W2106351473 hasConceptScore W2106351473C149782125 @default.
- W2106351473 hasConceptScore W2106351473C154945302 @default.
- W2106351473 hasConceptScore W2106351473C15744967 @default.
- W2106351473 hasConceptScore W2106351473C158600405 @default.
- W2106351473 hasConceptScore W2106351473C162324750 @default.
- W2106351473 hasConceptScore W2106351473C187736073 @default.
- W2106351473 hasConceptScore W2106351473C18903297 @default.
- W2106351473 hasConceptScore W2106351473C2776214188 @default.
- W2106351473 hasConceptScore W2106351473C2781035248 @default.
- W2106351473 hasConceptScore W2106351473C2987857752 @default.
- W2106351473 hasConceptScore W2106351473C33923547 @default.
- W2106351473 hasConceptScore W2106351473C39432304 @default.
- W2106351473 hasConceptScore W2106351473C41008148 @default.
- W2106351473 hasConceptScore W2106351473C542102704 @default.
- W2106351473 hasConceptScore W2106351473C71924100 @default.
- W2106351473 hasConceptScore W2106351473C86803240 @default.