Matches in SemOpenAlex for { <https://semopenalex.org/work/W2106417039> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2106417039 endingPage "4630" @default.
- W2106417039 startingPage "4593" @default.
- W2106417039 abstract "We prove that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a CW-complex and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M Superscript 1> <mml:semantics> <mml:msup> <mml:mi>M</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>M^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is its 1-skeleton, then the crossed module <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Pi 2 left-parenthesis upper M comma upper M Superscript 1 Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant=normal>Π<!-- Π --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>Pi _2(M,M^1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> depends only on the homotopy type of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as a space, up to free products, in the category of crossed modules, with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Pi 2 left-parenthesis upper D squared comma upper S Superscript 1 Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant=normal>Π<!-- Π --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>D</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>Pi _2(D^2,S^1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. From this it follows that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper G> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>G</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite crossed module and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is finite, then the number of crossed module morphisms <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Pi 2 left-parenthesis upper M comma upper M Superscript 1 Baseline right-parenthesis right-arrow script upper G> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant=normal>Π<!-- Π --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>G</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>Pi _2(M,M^1) to mathcal {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be re-scaled to a homotopy invariant <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I Subscript script upper G Baseline left-parenthesis upper M right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>I</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>G</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>I_{mathcal {G}}(M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, depending only on the algebraic 2-type of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We describe an algorithm for calculating <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi 2 left-parenthesis upper M comma upper M Superscript left-parenthesis 1 right-parenthesis Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>M</mml:mi> <mml:mo>,</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>pi _2(M,M^{(1)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as a crossed module over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi 1 left-parenthesis upper M Superscript left-parenthesis 1 right-parenthesis Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>pi _1(M^{(1)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in the case when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the complement of a knotted surface <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Sigma> <mml:semantics> <mml:mi mathvariant=normal>Σ<!-- Σ --></mml:mi> <mml:annotation encoding=application/x-tex>Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Superscript 4> <mml:semantics> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>S^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M Superscript left-parenthesis 1 right-parenthesis> <mml:semantics> <mml:msup> <mml:mi>M</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>M^{(1)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the handlebody of a handle decomposition of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> made from its <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=0> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=application/x-tex>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>- and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=1> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=application/x-tex>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-handles. Here, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Sigma> <mml:semantics> <mml:mi mathvariant=normal>Σ<!-- Σ --></mml:mi> <mml:annotation encoding=application/x-tex>Sigma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is presented by a knot with bands. This in particular gives us a geometric method for calculating the algebraic 2-type of the complement of a knotted surface from a hyperbolic splitting of it. We prove in addition that the invariant <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper I Subscript script upper G> <mml:semantics> <mml:msub> <mml:mi>I</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>G</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>I_{mathcal {G}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> yields a non-trivial invariant of knotted surfaces in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Superscript 4> <mml:semantics> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>4</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>S^4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with good properties with regard to explicit calculations." @default.
- W2106417039 created "2016-06-24" @default.
- W2106417039 creator A5046119426 @default.
- W2106417039 date "2009-04-03" @default.
- W2106417039 modified "2023-09-23" @default.
- W2106417039 title "The fundamental crossed module of the complement of a knotted surface" @default.
- W2106417039 cites W1534880334 @default.
- W2106417039 cites W1584005159 @default.
- W2106417039 cites W1971063266 @default.
- W2106417039 cites W1977556539 @default.
- W2106417039 cites W2001453730 @default.
- W2106417039 cites W2014479140 @default.
- W2106417039 cites W2032751035 @default.
- W2106417039 cites W2035451574 @default.
- W2106417039 cites W2042842623 @default.
- W2106417039 cites W2043121062 @default.
- W2106417039 cites W2055643888 @default.
- W2106417039 cites W2076309154 @default.
- W2106417039 cites W2078514381 @default.
- W2106417039 cites W2078826930 @default.
- W2106417039 cites W2082916529 @default.
- W2106417039 cites W2085896032 @default.
- W2106417039 cites W2094137555 @default.
- W2106417039 cites W2106010619 @default.
- W2106417039 cites W2114802936 @default.
- W2106417039 cites W2118381650 @default.
- W2106417039 cites W2123855102 @default.
- W2106417039 cites W2132259971 @default.
- W2106417039 cites W2132565447 @default.
- W2106417039 cites W2312514499 @default.
- W2106417039 cites W2334017186 @default.
- W2106417039 cites W2335178653 @default.
- W2106417039 cites W3099446108 @default.
- W2106417039 cites W4206048596 @default.
- W2106417039 cites W4206666514 @default.
- W2106417039 cites W4210496362 @default.
- W2106417039 cites W4237713313 @default.
- W2106417039 cites W4240214609 @default.
- W2106417039 cites W4241583248 @default.
- W2106417039 cites W4250161553 @default.
- W2106417039 cites W4299498003 @default.
- W2106417039 cites W576840074 @default.
- W2106417039 doi "https://doi.org/10.1090/s0002-9947-09-04576-0" @default.
- W2106417039 hasPublicationYear "2009" @default.
- W2106417039 type Work @default.
- W2106417039 sameAs 2106417039 @default.
- W2106417039 citedByCount "12" @default.
- W2106417039 countsByYear W21064170392012 @default.
- W2106417039 countsByYear W21064170392013 @default.
- W2106417039 countsByYear W21064170392014 @default.
- W2106417039 countsByYear W21064170392017 @default.
- W2106417039 countsByYear W21064170392019 @default.
- W2106417039 countsByYear W21064170392020 @default.
- W2106417039 countsByYear W21064170392021 @default.
- W2106417039 crossrefType "journal-article" @default.
- W2106417039 hasAuthorship W2106417039A5046119426 @default.
- W2106417039 hasBestOaLocation W21064170391 @default.
- W2106417039 hasConcept C11413529 @default.
- W2106417039 hasConcept C154945302 @default.
- W2106417039 hasConcept C2776321320 @default.
- W2106417039 hasConcept C41008148 @default.
- W2106417039 hasConceptScore W2106417039C11413529 @default.
- W2106417039 hasConceptScore W2106417039C154945302 @default.
- W2106417039 hasConceptScore W2106417039C2776321320 @default.
- W2106417039 hasConceptScore W2106417039C41008148 @default.
- W2106417039 hasIssue "9" @default.
- W2106417039 hasLocation W21064170391 @default.
- W2106417039 hasLocation W21064170392 @default.
- W2106417039 hasLocation W21064170393 @default.
- W2106417039 hasOpenAccess W2106417039 @default.
- W2106417039 hasPrimaryLocation W21064170391 @default.
- W2106417039 hasRelatedWork W151193258 @default.
- W2106417039 hasRelatedWork W1529400504 @default.
- W2106417039 hasRelatedWork W1871911958 @default.
- W2106417039 hasRelatedWork W1892467659 @default.
- W2106417039 hasRelatedWork W2348710178 @default.
- W2106417039 hasRelatedWork W2808586768 @default.
- W2106417039 hasRelatedWork W2998403542 @default.
- W2106417039 hasRelatedWork W3201926073 @default.
- W2106417039 hasRelatedWork W38394648 @default.
- W2106417039 hasRelatedWork W73525116 @default.
- W2106417039 hasVolume "361" @default.
- W2106417039 isParatext "false" @default.
- W2106417039 isRetracted "false" @default.
- W2106417039 magId "2106417039" @default.
- W2106417039 workType "article" @default.