Matches in SemOpenAlex for { <https://semopenalex.org/work/W2106453017> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2106453017 abstract "TCP throughput prediction is an important capability in wide area overlay and multi-homed networks where multiple paths may exist between data sources and receivers. In this paper we describe a new, lightweight method for TCP throughput prediction that can generate accurate forecasts for a broad range of file sizes and path conditions. Our method is based on Support Vector Regression modeling that uses a combination of prior file transfers and measurements of simple path properties. We calibrate and evaluate the capabilities of our throughput predictor in an extensive set of lab-based experiments where ground truth can be established for path properties using highly accurate passive measurements. We report the performance for our method in the ideal case of using our passive path property measurements over a range of test configurations. Our results show that for bulk transfers in heavy traffic, TCP throughput is predicted within 10% of the actual value 87% of the time, representing nearly a 3-fold improvement in accuracy over prior history-based methods. In the same lab environment, we assess our method using less accurate active probe measurements of path properties, and show that predictions can be made within 10% of the actual value nearly 50% of the time over a range of file sizes and traffic conditions. This result represents approximately a 60% improvement over history-based methods with a much lower impact on end-to-end paths. Finally, we implement our predictor in a tool called PathPerf and test it in experiments conducted on wide area paths. The results demonstrate that PathPerf predicts TCP through put accurately over a variety of paths." @default.
- W2106453017 created "2016-06-24" @default.
- W2106453017 creator A5008783327 @default.
- W2106453017 creator A5043427561 @default.
- W2106453017 creator A5068386240 @default.
- W2106453017 creator A5077852213 @default.
- W2106453017 date "2007-06-12" @default.
- W2106453017 modified "2023-10-17" @default.
- W2106453017 title "A machine learning approach to TCP throughput prediction" @default.
- W2106453017 cites W1505673266 @default.
- W2106453017 cites W1964357740 @default.
- W2106453017 cites W1990920914 @default.
- W2106453017 cites W2012936414 @default.
- W2106453017 cites W2064623471 @default.
- W2106453017 cites W2069291311 @default.
- W2106453017 cites W2100662739 @default.
- W2106453017 cites W2105047865 @default.
- W2106453017 cites W2106869861 @default.
- W2106453017 cites W2107409339 @default.
- W2106453017 cites W2116398767 @default.
- W2106453017 cites W2122889548 @default.
- W2106453017 cites W2124478678 @default.
- W2106453017 cites W2139505957 @default.
- W2106453017 cites W2141299790 @default.
- W2106453017 cites W2141405301 @default.
- W2106453017 cites W2144553078 @default.
- W2106453017 cites W2157458486 @default.
- W2106453017 cites W2161630099 @default.
- W2106453017 cites W2162578507 @default.
- W2106453017 cites W2164837776 @default.
- W2106453017 cites W2166625972 @default.
- W2106453017 cites W2171223434 @default.
- W2106453017 cites W4231918747 @default.
- W2106453017 cites W4239049658 @default.
- W2106453017 cites W4248693620 @default.
- W2106453017 doi "https://doi.org/10.1145/1254882.1254894" @default.
- W2106453017 hasPublicationYear "2007" @default.
- W2106453017 type Work @default.
- W2106453017 sameAs 2106453017 @default.
- W2106453017 citedByCount "76" @default.
- W2106453017 countsByYear W21064530172012 @default.
- W2106453017 countsByYear W21064530172013 @default.
- W2106453017 countsByYear W21064530172014 @default.
- W2106453017 countsByYear W21064530172015 @default.
- W2106453017 countsByYear W21064530172016 @default.
- W2106453017 countsByYear W21064530172017 @default.
- W2106453017 countsByYear W21064530172018 @default.
- W2106453017 countsByYear W21064530172019 @default.
- W2106453017 countsByYear W21064530172020 @default.
- W2106453017 countsByYear W21064530172021 @default.
- W2106453017 countsByYear W21064530172022 @default.
- W2106453017 crossrefType "proceedings-article" @default.
- W2106453017 hasAuthorship W2106453017A5008783327 @default.
- W2106453017 hasAuthorship W2106453017A5043427561 @default.
- W2106453017 hasAuthorship W2106453017A5068386240 @default.
- W2106453017 hasAuthorship W2106453017A5077852213 @default.
- W2106453017 hasBestOaLocation W21064530172 @default.
- W2106453017 hasConcept C124101348 @default.
- W2106453017 hasConcept C127413603 @default.
- W2106453017 hasConcept C146978453 @default.
- W2106453017 hasConcept C157764524 @default.
- W2106453017 hasConcept C204323151 @default.
- W2106453017 hasConcept C2777735758 @default.
- W2106453017 hasConcept C31258907 @default.
- W2106453017 hasConcept C41008148 @default.
- W2106453017 hasConcept C555944384 @default.
- W2106453017 hasConcept C76155785 @default.
- W2106453017 hasConcept C79403827 @default.
- W2106453017 hasConceptScore W2106453017C124101348 @default.
- W2106453017 hasConceptScore W2106453017C127413603 @default.
- W2106453017 hasConceptScore W2106453017C146978453 @default.
- W2106453017 hasConceptScore W2106453017C157764524 @default.
- W2106453017 hasConceptScore W2106453017C204323151 @default.
- W2106453017 hasConceptScore W2106453017C2777735758 @default.
- W2106453017 hasConceptScore W2106453017C31258907 @default.
- W2106453017 hasConceptScore W2106453017C41008148 @default.
- W2106453017 hasConceptScore W2106453017C555944384 @default.
- W2106453017 hasConceptScore W2106453017C76155785 @default.
- W2106453017 hasConceptScore W2106453017C79403827 @default.
- W2106453017 hasLocation W21064530171 @default.
- W2106453017 hasLocation W21064530172 @default.
- W2106453017 hasOpenAccess W2106453017 @default.
- W2106453017 hasPrimaryLocation W21064530171 @default.
- W2106453017 hasRelatedWork W160116885 @default.
- W2106453017 hasRelatedWork W1967383368 @default.
- W2106453017 hasRelatedWork W2011083790 @default.
- W2106453017 hasRelatedWork W2041947271 @default.
- W2106453017 hasRelatedWork W2059929079 @default.
- W2106453017 hasRelatedWork W2322403445 @default.
- W2106453017 hasRelatedWork W2477853911 @default.
- W2106453017 hasRelatedWork W2526884355 @default.
- W2106453017 hasRelatedWork W2625512991 @default.
- W2106453017 hasRelatedWork W2950363298 @default.
- W2106453017 isParatext "false" @default.
- W2106453017 isRetracted "false" @default.
- W2106453017 magId "2106453017" @default.
- W2106453017 workType "article" @default.