Matches in SemOpenAlex for { <https://semopenalex.org/work/W2106490775> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2106490775 abstract "Latent Dirichlet allocation (LDA) and other related topic models are increasingly popular tools for summarization and manifold discovery in discrete data. However, LDA does not capture correlations between topics. In this paper, we introduce the pachinko allocation model (PAM), which captures arbitrary, nested, and possibly sparse correlations between topics using a directed acyclic graph (DAG). The leaves of the DAG represent individual words in the vocabulary, while each interior node represents a correlation among its children, which may be words or other interior nodes (topics). PAM provides a flexible alternative to recent work by Blei and Lafferty (2006), which captures correlations only between pairs of topics. Using text data from newsgroups, historic NIPS proceedings and other research paper corpora, we show improved performance of PAM in document classification, likelihood of held-out data, the ability to support finer-grained topics, and topical keyword coherence." @default.
- W2106490775 created "2016-06-24" @default.
- W2106490775 creator A5000432967 @default.
- W2106490775 creator A5008354502 @default.
- W2106490775 date "2006-01-01" @default.
- W2106490775 modified "2023-10-02" @default.
- W2106490775 title "Pachinko allocation" @default.
- W2106490775 cites W114923250 @default.
- W2106490775 cites W141372029 @default.
- W2106490775 cites W1638753340 @default.
- W2106490775 cites W1880262756 @default.
- W2106490775 cites W1982078690 @default.
- W2106490775 cites W2001082470 @default.
- W2106490775 cites W2015749074 @default.
- W2106490775 cites W2112050062 @default.
- W2106490775 cites W2112971401 @default.
- W2106490775 cites W2132827946 @default.
- W2106490775 cites W2140124448 @default.
- W2106490775 cites W2158266063 @default.
- W2106490775 doi "https://doi.org/10.1145/1143844.1143917" @default.
- W2106490775 hasPublicationYear "2006" @default.
- W2106490775 type Work @default.
- W2106490775 sameAs 2106490775 @default.
- W2106490775 citedByCount "527" @default.
- W2106490775 countsByYear W21064907752012 @default.
- W2106490775 countsByYear W21064907752013 @default.
- W2106490775 countsByYear W21064907752014 @default.
- W2106490775 countsByYear W21064907752015 @default.
- W2106490775 countsByYear W21064907752016 @default.
- W2106490775 countsByYear W21064907752017 @default.
- W2106490775 countsByYear W21064907752018 @default.
- W2106490775 countsByYear W21064907752019 @default.
- W2106490775 countsByYear W21064907752020 @default.
- W2106490775 countsByYear W21064907752021 @default.
- W2106490775 countsByYear W21064907752022 @default.
- W2106490775 countsByYear W21064907752023 @default.
- W2106490775 crossrefType "proceedings-article" @default.
- W2106490775 hasAuthorship W2106490775A5000432967 @default.
- W2106490775 hasAuthorship W2106490775A5008354502 @default.
- W2106490775 hasConcept C41008148 @default.
- W2106490775 hasConceptScore W2106490775C41008148 @default.
- W2106490775 hasLocation W21064907751 @default.
- W2106490775 hasOpenAccess W2106490775 @default.
- W2106490775 hasPrimaryLocation W21064907751 @default.
- W2106490775 hasRelatedWork W1596801655 @default.
- W2106490775 hasRelatedWork W2130043461 @default.
- W2106490775 hasRelatedWork W2350741829 @default.
- W2106490775 hasRelatedWork W2358668433 @default.
- W2106490775 hasRelatedWork W2376932109 @default.
- W2106490775 hasRelatedWork W2382290278 @default.
- W2106490775 hasRelatedWork W2390279801 @default.
- W2106490775 hasRelatedWork W2748952813 @default.
- W2106490775 hasRelatedWork W2899084033 @default.
- W2106490775 hasRelatedWork W2530322880 @default.
- W2106490775 isParatext "false" @default.
- W2106490775 isRetracted "false" @default.
- W2106490775 magId "2106490775" @default.
- W2106490775 workType "article" @default.