Matches in SemOpenAlex for { <https://semopenalex.org/work/W2106532277> ?p ?o ?g. }
- W2106532277 endingPage "868" @default.
- W2106532277 startingPage "861" @default.
- W2106532277 abstract "The kinetics of transport of L-lactate, pyruvate, ketone bodies, and other monocarboxylates into isolated hepatocytes from starved rats were measured at 25°C using the intracellular pH-sensitive dye, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein, to detect the associated proton influx. Transport kinetics were similar, but not identical, to those determined using the same technique for the monocarboxylate transporter (MCT) of Ehrlich Lettré tumor cells (MCT1) (Carpenter, L., and Halestrap, A. P.(1994) Biochem. J. 304, 751-760). Km values for L-lactate (4.7 mM), D-lactate (27 mM), D,L-2-hydroxybutyrate (3.3 mM), L-3-hydroxybutyrate (12.7 mM), and acetoacetate (6.1 mM) were very similar in both cell types, whereas in hepatocytes the Km values were higher than MCT1 for pyruvate (1.3 mM, cf. 0.72 mM), D-3-hydroxybutyrate (24.7 mM, cf. 10.1 mM), L-2-chloropropionate (1.3 mM, cf. 0.8 mM), 4-hydroxybutyrate (18.1 mM, cf. 7.7 mM), and acetate (5.4 mM, cf. 3.7 mM). In contrast, the hepatocyte carrier had lower Km values than MCT1 for glycolate, chloroacetate, dichloroacetate, and 2-hydroxy-2-methylpropionate. Differences in stereoselectivity were also detected; both carriers showed a lower Km for L-lactate than D-lactate, while hepatocyte MCT exhibited a lower Km for D- than L-2-chloropropionate and for L- than D-3-hydroxybutyrate; this is not the case for MCT1. A range of inhibitors of MCT1, including α-cyanocinnamate derivatives, phloretin, and niflumic acid, inhibited hepatocyte MCT with K0.5 values significantly higher than for tumor cell MCT1, while stilbene disulfonate derivatives and p-chloromercuribenzene sulfonate had similar K0.5 values in both cell types. The branched chain ketoacids α-ketoisocaproate and α-ketoisovalerate were also potent inhibitors of hepatocyte MCT with K0.5 values of 270 and 340 μM, respectively. The activation energy of L-lactate transport into hepatocytes was 58 kJ mol−1, and measured rates of transport at 37°C were considerably greater than those required for maximal rates of gluconeogenesis. The properties of the hepatocyte monocarboxylate transporter are consistent with the presence of a distinct isoform of MCT in liver cells as suggested by the cloning and sequencing of MCT2 from hamster liver (Garcia, C. K., Brown, M. S., Pathak, R. K., and Goldstein, J. L.(1995) J. Biol. Chem. 270, 1843-1849). The kinetics of transport of L-lactate, pyruvate, ketone bodies, and other monocarboxylates into isolated hepatocytes from starved rats were measured at 25°C using the intracellular pH-sensitive dye, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein, to detect the associated proton influx. Transport kinetics were similar, but not identical, to those determined using the same technique for the monocarboxylate transporter (MCT) of Ehrlich Lettré tumor cells (MCT1) (Carpenter, L., and Halestrap, A. P.(1994) Biochem. J. 304, 751-760). Km values for L-lactate (4.7 mM), D-lactate (27 mM), D,L-2-hydroxybutyrate (3.3 mM), L-3-hydroxybutyrate (12.7 mM), and acetoacetate (6.1 mM) were very similar in both cell types, whereas in hepatocytes the Km values were higher than MCT1 for pyruvate (1.3 mM, cf. 0.72 mM), D-3-hydroxybutyrate (24.7 mM, cf. 10.1 mM), L-2-chloropropionate (1.3 mM, cf. 0.8 mM), 4-hydroxybutyrate (18.1 mM, cf. 7.7 mM), and acetate (5.4 mM, cf. 3.7 mM). In contrast, the hepatocyte carrier had lower Km values than MCT1 for glycolate, chloroacetate, dichloroacetate, and 2-hydroxy-2-methylpropionate. Differences in stereoselectivity were also detected; both carriers showed a lower Km for L-lactate than D-lactate, while hepatocyte MCT exhibited a lower Km for D- than L-2-chloropropionate and for L- than D-3-hydroxybutyrate; this is not the case for MCT1. A range of inhibitors of MCT1, including α-cyanocinnamate derivatives, phloretin, and niflumic acid, inhibited hepatocyte MCT with K0.5 values significantly higher than for tumor cell MCT1, while stilbene disulfonate derivatives and p-chloromercuribenzene sulfonate had similar K0.5 values in both cell types. The branched chain ketoacids α-ketoisocaproate and α-ketoisovalerate were also potent inhibitors of hepatocyte MCT with K0.5 values of 270 and 340 μM, respectively. The activation energy of L-lactate transport into hepatocytes was 58 kJ mol−1, and measured rates of transport at 37°C were considerably greater than those required for maximal rates of gluconeogenesis. The properties of the hepatocyte monocarboxylate transporter are consistent with the presence of a distinct isoform of MCT in liver cells as suggested by the cloning and sequencing of MCT2 from hamster liver (Garcia, C. K., Brown, M. S., Pathak, R. K., and Goldstein, J. L.(1995) J. Biol. Chem. 270, 1843-1849)." @default.
- W2106532277 created "2016-06-24" @default.
- W2106532277 creator A5007392346 @default.
- W2106532277 creator A5015900831 @default.
- W2106532277 date "1996-01-01" @default.
- W2106532277 modified "2023-10-14" @default.
- W2106532277 title "The Kinetics, Substrate, and Inhibitor Specificity of the Monocarboxylate (Lactate) Transporter of Rat Liver Cells Determined Using the Fluorescent Intracellular pH Indicator, 2′,7′-Bis(carboxyethyl)-5(6)-carboxyfluorescein" @default.
- W2106532277 cites W1498947772 @default.
- W2106532277 cites W1532017641 @default.
- W2106532277 cites W1548454840 @default.
- W2106532277 cites W1595285401 @default.
- W2106532277 cites W1906860528 @default.
- W2106532277 cites W1958525759 @default.
- W2106532277 cites W1972493608 @default.
- W2106532277 cites W1978131706 @default.
- W2106532277 cites W1979715615 @default.
- W2106532277 cites W1983193251 @default.
- W2106532277 cites W1984770312 @default.
- W2106532277 cites W1987230338 @default.
- W2106532277 cites W2041024806 @default.
- W2106532277 cites W2044463379 @default.
- W2106532277 cites W2045680368 @default.
- W2106532277 cites W2059480982 @default.
- W2106532277 cites W2071632526 @default.
- W2106532277 cites W2082436277 @default.
- W2106532277 cites W2165199409 @default.
- W2106532277 cites W2230866409 @default.
- W2106532277 cites W2328088020 @default.
- W2106532277 cites W2335800129 @default.
- W2106532277 cites W2411217450 @default.
- W2106532277 cites W2419665772 @default.
- W2106532277 cites W245635694 @default.
- W2106532277 cites W258858333 @default.
- W2106532277 cites W2731343349 @default.
- W2106532277 cites W4321000909 @default.
- W2106532277 cites W52372189 @default.
- W2106532277 cites W8766187 @default.
- W2106532277 doi "https://doi.org/10.1074/jbc.271.2.861" @default.
- W2106532277 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8557697" @default.
- W2106532277 hasPublicationYear "1996" @default.
- W2106532277 type Work @default.
- W2106532277 sameAs 2106532277 @default.
- W2106532277 citedByCount "167" @default.
- W2106532277 countsByYear W21065322772012 @default.
- W2106532277 countsByYear W21065322772013 @default.
- W2106532277 countsByYear W21065322772014 @default.
- W2106532277 countsByYear W21065322772015 @default.
- W2106532277 countsByYear W21065322772016 @default.
- W2106532277 countsByYear W21065322772017 @default.
- W2106532277 countsByYear W21065322772018 @default.
- W2106532277 countsByYear W21065322772019 @default.
- W2106532277 countsByYear W21065322772020 @default.
- W2106532277 countsByYear W21065322772021 @default.
- W2106532277 countsByYear W21065322772022 @default.
- W2106532277 crossrefType "journal-article" @default.
- W2106532277 hasAuthorship W2106532277A5007392346 @default.
- W2106532277 hasAuthorship W2106532277A5015900831 @default.
- W2106532277 hasBestOaLocation W21065322771 @default.
- W2106532277 hasConcept C104317684 @default.
- W2106532277 hasConcept C121332964 @default.
- W2106532277 hasConcept C134897140 @default.
- W2106532277 hasConcept C148898269 @default.
- W2106532277 hasConcept C149011108 @default.
- W2106532277 hasConcept C153911025 @default.
- W2106532277 hasConcept C181199279 @default.
- W2106532277 hasConcept C185592680 @default.
- W2106532277 hasConcept C202751555 @default.
- W2106532277 hasConcept C2776200302 @default.
- W2106532277 hasConcept C2778423325 @default.
- W2106532277 hasConcept C2779533339 @default.
- W2106532277 hasConcept C2781217356 @default.
- W2106532277 hasConcept C31532488 @default.
- W2106532277 hasConcept C41183919 @default.
- W2106532277 hasConcept C41625074 @default.
- W2106532277 hasConcept C55493867 @default.
- W2106532277 hasConcept C56856141 @default.
- W2106532277 hasConcept C62231903 @default.
- W2106532277 hasConcept C62520636 @default.
- W2106532277 hasConcept C71240020 @default.
- W2106532277 hasConcept C79879829 @default.
- W2106532277 hasConcept C86803240 @default.
- W2106532277 hasConceptScore W2106532277C104317684 @default.
- W2106532277 hasConceptScore W2106532277C121332964 @default.
- W2106532277 hasConceptScore W2106532277C134897140 @default.
- W2106532277 hasConceptScore W2106532277C148898269 @default.
- W2106532277 hasConceptScore W2106532277C149011108 @default.
- W2106532277 hasConceptScore W2106532277C153911025 @default.
- W2106532277 hasConceptScore W2106532277C181199279 @default.
- W2106532277 hasConceptScore W2106532277C185592680 @default.
- W2106532277 hasConceptScore W2106532277C202751555 @default.
- W2106532277 hasConceptScore W2106532277C2776200302 @default.
- W2106532277 hasConceptScore W2106532277C2778423325 @default.
- W2106532277 hasConceptScore W2106532277C2779533339 @default.
- W2106532277 hasConceptScore W2106532277C2781217356 @default.
- W2106532277 hasConceptScore W2106532277C31532488 @default.
- W2106532277 hasConceptScore W2106532277C41183919 @default.
- W2106532277 hasConceptScore W2106532277C41625074 @default.
- W2106532277 hasConceptScore W2106532277C55493867 @default.