Matches in SemOpenAlex for { <https://semopenalex.org/work/W2106622021> ?p ?o ?g. }
- W2106622021 endingPage "491" @default.
- W2106622021 startingPage "455" @default.
- W2106622021 abstract "A synthetic octahedral-site-vacancy-free annite sample and its progressive oxidation, induced by heating in air, were studied by powder X-ray diffraction (pXRD), Mössbauer spectroscopy, nuclear reaction analysis (NRA), Raman spectroscopy, X-ray fluorescence (XRF) spectroscopy, gas chromatography (GC), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscopy (SEM), and size-fraction separation methods. For a set heating time and as temperature is increased, the sample first evolves along an annite-oxyannite join, until all H is lost via the oxybiotite reaction (Fe2+ + OH− ⇌ Fe3+ + O2− + H↑). It then evolves along an oxyannite-ferrioxyannite join, where ideal ferrioxyannite, KFe3+8/3□1/3AlSi3O12, is defined as the product resulting from complete oxidation of ideal oxyannite, KFe3+2Fe2+AlSi3O12, via the vacancy mechanism (3 Fe2+ ⇌ 2 Fe3+ + [6]□ + Fe↑). A pillaring collapse transition is observed as a collapse of c near the point where $${rm{F}}{{rm{e}}^{2 + }}{rm{/Fe}} = {raise0.5exhbox{$scriptstyle 1$}kern-0.1em/kern-0.15emlower0.25exhbox{$scriptstyle 3$}}$$ and all OH groups are predicted and observed to be lost. Quantitative analyses of H, using NRA, GC, and Raman spectroscopy, corroborate this interpretation and, in combination with accurate ferric/ferrous ratios from Mössbauer spectroscopy and lattice parameter determinations, allow a clear distinction to be made between vacancy-free and vacancy-bearing annite. The amount of Fe in ancillary Fe oxide phases produced by the vacancy mechanism is measured by Mössbauer spectroscopy to be 11.3(5)% of total Fe, in agreement with both the theoretical prediction of 1/9 = 11.1% and the observed TGA weight gain. The initiation of Fe oxide formation near the point of completion of the oxybiotite reaction ( $${rm{F}}{{rm{e}}^{2 + }}{rm{/Fe}} = {raise0.5exhbox{$scriptstyle 1$}kern-0.1em/kern-0.15emlower0.25exhbox{$scriptstyle 3$}}$$ ) is corroborated by pXRD, TGA, Raman spectroscopy, and appearance of an Fe oxide hyperfine field sextet in the Mössbauer spectra. The region of Fe oxide formation is shown to coincide with a region of octahedral site vacancy formation, using a new Mössbauer spectral signature of vacancies that consists of a component at 2.2 mm/s in the [6]Fe3+ quadrupole splitting distribution (QSD). The crystal chemical behaviors of annite-oxyannite and of oxyannite-ferrioxyannite are best contrasted and compared to the behaviors of other layer-silicate series in terms of b vs. [D] (average octahedral cation to O bond length). This also leads to a diagnostic test for the presence of octahedral site vacancies in hydrothermally synthesized annite, based on a graph of b vs. Fe2+/Fe. The implications of the observed sequence of thermal oxidation reactions for the thermodynamic relevance of the oxybiotite and vacancy reactions in hydrothermal syntheses are examined and it is concluded that the oxybiotite reaction is the relevant reaction in the single-phase stability field of annite, at high hydrogen fugacity and using ideal starting cation stoichiometry. The vacancy reaction is only relevant in a multi-phase field, at lower hydrogen fugacity, that includes an Fe oxide equilibrium phase (magnetite) that can effectively compete for Fe, or when using non-ideal starting cation stoichiometries." @default.
- W2106622021 created "2016-06-24" @default.
- W2106622021 creator A5081434097 @default.
- W2106622021 date "2001-01-01" @default.
- W2106622021 modified "2023-09-27" @default.
- W2106622021 title "Mechanisms and Crystal Chemistry of Oxidation in Annite: Resolving the Hydrogen-Loss and Vacancy Reactions" @default.
- W2106622021 cites W112633697 @default.
- W2106622021 cites W1440646708 @default.
- W2106622021 cites W1514244816 @default.
- W2106622021 cites W1543028080 @default.
- W2106622021 cites W1580272938 @default.
- W2106622021 cites W1596306233 @default.
- W2106622021 cites W1597859696 @default.
- W2106622021 cites W1677739908 @default.
- W2106622021 cites W1678704643 @default.
- W2106622021 cites W1679304475 @default.
- W2106622021 cites W1965516542 @default.
- W2106622021 cites W1973102351 @default.
- W2106622021 cites W1973293871 @default.
- W2106622021 cites W1992273036 @default.
- W2106622021 cites W1995144599 @default.
- W2106622021 cites W2001653617 @default.
- W2106622021 cites W2002147644 @default.
- W2106622021 cites W2002730540 @default.
- W2106622021 cites W2005355118 @default.
- W2106622021 cites W2005637065 @default.
- W2106622021 cites W2006664309 @default.
- W2106622021 cites W2007985863 @default.
- W2106622021 cites W2010275029 @default.
- W2106622021 cites W2012307775 @default.
- W2106622021 cites W2015856769 @default.
- W2106622021 cites W2023330329 @default.
- W2106622021 cites W2024542372 @default.
- W2106622021 cites W2031249260 @default.
- W2106622021 cites W2047410802 @default.
- W2106622021 cites W2050989783 @default.
- W2106622021 cites W2056124270 @default.
- W2106622021 cites W2060971240 @default.
- W2106622021 cites W2061162406 @default.
- W2106622021 cites W2069613116 @default.
- W2106622021 cites W2069771407 @default.
- W2106622021 cites W2070138503 @default.
- W2106622021 cites W2076217050 @default.
- W2106622021 cites W2081684175 @default.
- W2106622021 cites W2082304485 @default.
- W2106622021 cites W2091531277 @default.
- W2106622021 cites W2095658057 @default.
- W2106622021 cites W2101110196 @default.
- W2106622021 cites W2106323480 @default.
- W2106622021 cites W2126866773 @default.
- W2106622021 cites W2126936478 @default.
- W2106622021 cites W2136031279 @default.
- W2106622021 cites W2145065455 @default.
- W2106622021 cites W2154118184 @default.
- W2106622021 cites W2158660759 @default.
- W2106622021 cites W2158898149 @default.
- W2106622021 cites W2158923238 @default.
- W2106622021 cites W2161417248 @default.
- W2106622021 cites W2166979050 @default.
- W2106622021 cites W2169621006 @default.
- W2106622021 cites W2184436774 @default.
- W2106622021 cites W2185108419 @default.
- W2106622021 cites W2255721375 @default.
- W2106622021 cites W2278849248 @default.
- W2106622021 cites W2289363467 @default.
- W2106622021 cites W2290149889 @default.
- W2106622021 cites W2324969567 @default.
- W2106622021 cites W2324981522 @default.
- W2106622021 cites W2338150509 @default.
- W2106622021 cites W2341921621 @default.
- W2106622021 cites W2394816508 @default.
- W2106622021 cites W2395496100 @default.
- W2106622021 cites W2406048908 @default.
- W2106622021 cites W2460946113 @default.
- W2106622021 cites W2472871591 @default.
- W2106622021 cites W2519902035 @default.
- W2106622021 cites W2590149248 @default.
- W2106622021 cites W2921810360 @default.
- W2106622021 cites W2921932858 @default.
- W2106622021 cites W2987637782 @default.
- W2106622021 cites W3011360336 @default.
- W2106622021 cites W3035661268 @default.
- W2106622021 cites W3036821725 @default.
- W2106622021 cites W3127311651 @default.
- W2106622021 cites W3157332804 @default.
- W2106622021 doi "https://doi.org/10.1346/ccmn.2001.0490601" @default.
- W2106622021 hasPublicationYear "2001" @default.
- W2106622021 type Work @default.
- W2106622021 sameAs 2106622021 @default.
- W2106622021 citedByCount "41" @default.
- W2106622021 countsByYear W21066220212012 @default.
- W2106622021 countsByYear W21066220212013 @default.
- W2106622021 countsByYear W21066220212015 @default.
- W2106622021 countsByYear W21066220212016 @default.
- W2106622021 countsByYear W21066220212017 @default.
- W2106622021 countsByYear W21066220212018 @default.
- W2106622021 countsByYear W21066220212019 @default.
- W2106622021 countsByYear W21066220212020 @default.