Matches in SemOpenAlex for { <https://semopenalex.org/work/W2106979384> ?p ?o ?g. }
- W2106979384 abstract "This thesis splits into two major parts. The connection between the two parts is the notion of categorification which we shortly explain/recall in the introduction. In the first part of this thesis we extend Bar-Natan's cobordism based categorification of the Jones polynomial to virtual links. Our topological complex allows a direct extension of the classical Khovanov complex (h=t=0), the variant of Lee (h=0,t=1) and other classical link homologies. We show that our construction allows, over rings of characteristic 2, extensions with no classical analogon, e.g. Bar-Natan's bZ/2-link homology can be extended in two non-equivalent ways. Our construction is computable in the sense that one can write a computer program to perform calculations, e.g. we have written a MATHEMATICA based program. Moreover, we give a classification of all unoriented TQFTs which can be used to define virtual link homologies from our topological construction. Furthermore, we prove that our extension is combinatorial and has semi-local properties. We use the semi-local properties to prove an application, i.e. we give a discussion of Lee's degeneration of virtual homology. In the second part of this thesis (which is based on joint work with Mackaay and Pan) we use Kuperberg's sl3 webs and Khovanov's sl3 foams to define a new algebra K_S, which we call the sl3 web algebra. It is the sl3 analogue of Khovanov's arc algebra H_n. We prove that K_S is a graded symmetric Frobenius algebra. Furthermore, we categorify an instance of q-skew Howe duality, which allows us to prove that K_S is Morita equivalent to a certain cyclotomic KLR-algebra. This allows us to determine the split Grothendieck group K^(oplus)_0(K_S), to show that its center is isomorphic to the cohomology ring of a certain Spaltenstein variety, and to prove that K_S is a graded cellular algebra." @default.
- W2106979384 created "2016-06-24" @default.
- W2106979384 creator A5016692246 @default.
- W2106979384 date "2022-02-20" @default.
- W2106979384 modified "2023-10-18" @default.
- W2106979384 title "Categorification and applications in topology and representation theory" @default.
- W2106979384 cites W135091152 @default.
- W2106979384 cites W1484344542 @default.
- W2106979384 cites W1506425503 @default.
- W2106979384 cites W1521147094 @default.
- W2106979384 cites W1526024217 @default.
- W2106979384 cites W1533339675 @default.
- W2106979384 cites W1539091812 @default.
- W2106979384 cites W1539812590 @default.
- W2106979384 cites W1542689491 @default.
- W2106979384 cites W1550508535 @default.
- W2106979384 cites W1579739595 @default.
- W2106979384 cites W1631891608 @default.
- W2106979384 cites W1641245325 @default.
- W2106979384 cites W1656079179 @default.
- W2106979384 cites W1660503251 @default.
- W2106979384 cites W168088811 @default.
- W2106979384 cites W1692415252 @default.
- W2106979384 cites W1777107722 @default.
- W2106979384 cites W1780974867 @default.
- W2106979384 cites W1804891218 @default.
- W2106979384 cites W1909874209 @default.
- W2106979384 cites W1963090111 @default.
- W2106979384 cites W1965200974 @default.
- W2106979384 cites W1965443691 @default.
- W2106979384 cites W1965998253 @default.
- W2106979384 cites W1978876276 @default.
- W2106979384 cites W1980991662 @default.
- W2106979384 cites W1981331759 @default.
- W2106979384 cites W1986569143 @default.
- W2106979384 cites W1996321859 @default.
- W2106979384 cites W1998444599 @default.
- W2106979384 cites W1998851842 @default.
- W2106979384 cites W2000566318 @default.
- W2106979384 cites W2001860934 @default.
- W2106979384 cites W2004736333 @default.
- W2106979384 cites W2005851199 @default.
- W2106979384 cites W2012157807 @default.
- W2106979384 cites W2016270404 @default.
- W2106979384 cites W2018560756 @default.
- W2106979384 cites W2018733254 @default.
- W2106979384 cites W2020270262 @default.
- W2106979384 cites W2027907621 @default.
- W2106979384 cites W2028273987 @default.
- W2106979384 cites W2031564163 @default.
- W2106979384 cites W2034216336 @default.
- W2106979384 cites W2042314848 @default.
- W2106979384 cites W2052506646 @default.
- W2106979384 cites W2053086840 @default.
- W2106979384 cites W2054866775 @default.
- W2106979384 cites W2065063839 @default.
- W2106979384 cites W2070994463 @default.
- W2106979384 cites W2073215282 @default.
- W2106979384 cites W2075896668 @default.
- W2106979384 cites W2080743555 @default.
- W2106979384 cites W2081347734 @default.
- W2106979384 cites W2081480012 @default.
- W2106979384 cites W2082571435 @default.
- W2106979384 cites W2084279601 @default.
- W2106979384 cites W2093623265 @default.
- W2106979384 cites W2097898594 @default.
- W2106979384 cites W2102012038 @default.
- W2106979384 cites W2105853875 @default.
- W2106979384 cites W2120928995 @default.
- W2106979384 cites W2127083891 @default.
- W2106979384 cites W2137459590 @default.
- W2106979384 cites W2138044972 @default.
- W2106979384 cites W2156613167 @default.
- W2106979384 cites W2160646132 @default.
- W2106979384 cites W2162475991 @default.
- W2106979384 cites W2238265714 @default.
- W2106979384 cites W2331530531 @default.
- W2106979384 cites W2338456377 @default.
- W2106979384 cites W2592691829 @default.
- W2106979384 cites W2907206301 @default.
- W2106979384 cites W2962786328 @default.
- W2106979384 cites W2963481715 @default.
- W2106979384 cites W3010782316 @default.
- W2106979384 cites W3098204258 @default.
- W2106979384 cites W3100201119 @default.
- W2106979384 cites W3100433565 @default.
- W2106979384 cites W3100445104 @default.
- W2106979384 cites W3100661685 @default.
- W2106979384 cites W3101779651 @default.
- W2106979384 cites W3102718270 @default.
- W2106979384 cites W3102907650 @default.
- W2106979384 cites W3103791650 @default.
- W2106979384 cites W3105398654 @default.
- W2106979384 cites W3105681266 @default.
- W2106979384 cites W3106117372 @default.
- W2106979384 cites W3106223585 @default.
- W2106979384 cites W3106387120 @default.
- W2106979384 cites W3122297891 @default.
- W2106979384 cites W98023151 @default.
- W2106979384 cites W2015310517 @default.