Matches in SemOpenAlex for { <https://semopenalex.org/work/W2106994165> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2106994165 endingPage "29" @default.
- W2106994165 startingPage "24" @default.
- W2106994165 abstract "In this paper, an approach for improving active shape segmentation of medical images using machine learning techniques which can achieve high segmentation accuracy is described. A statistical shape model is created from a training dataset which is used to search for an object of interest in an image. Active shape model has shown over time to be a reliable image segmentation methodology, but its segmentation accuracy is hindered especially by poor initialization which can‟t be guaranteed to always be perfect. In our methodology, we extract features for each landmark using haarfilters[9]. We train a classifier with these features and use the classifier to classify points around the final points of an Active shape model search. The aim of this approach is to better place points that might have been wrongly placed from the ASM search. We have used the simple, yet effective K-Nearest Neighbour machine learning algorithm, and have demonstrated the ability of this method to improve segmentation accuracy by segmenting 2d images of the lateral ventricles of the brain. General Terms" @default.
- W2106994165 created "2016-06-24" @default.
- W2106994165 creator A5062689327 @default.
- W2106994165 date "2013-05-31" @default.
- W2106994165 modified "2023-09-25" @default.
- W2106994165 title "Medical Image Segmentation using an Extended Active Shape Model" @default.
- W2106994165 cites W1506158822 @default.
- W2106994165 cites W1759689472 @default.
- W2106994165 cites W185143084 @default.
- W2106994165 cites W1990937109 @default.
- W2106994165 cites W2015259155 @default.
- W2106994165 cites W2026981426 @default.
- W2106994165 cites W2038952578 @default.
- W2106994165 cites W2078775693 @default.
- W2106994165 cites W2112546694 @default.
- W2106994165 cites W2152826865 @default.
- W2106994165 cites W2963431010 @default.
- W2106994165 cites W3097096317 @default.
- W2106994165 doi "https://doi.org/10.5120/12079-8173" @default.
- W2106994165 hasPublicationYear "2013" @default.
- W2106994165 type Work @default.
- W2106994165 sameAs 2106994165 @default.
- W2106994165 citedByCount "1" @default.
- W2106994165 countsByYear W21069941652015 @default.
- W2106994165 crossrefType "journal-article" @default.
- W2106994165 hasAuthorship W2106994165A5062689327 @default.
- W2106994165 hasBestOaLocation W21069941651 @default.
- W2106994165 hasConcept C115961682 @default.
- W2106994165 hasConcept C154945302 @default.
- W2106994165 hasConcept C31972630 @default.
- W2106994165 hasConcept C41008148 @default.
- W2106994165 hasConcept C89600930 @default.
- W2106994165 hasConceptScore W2106994165C115961682 @default.
- W2106994165 hasConceptScore W2106994165C154945302 @default.
- W2106994165 hasConceptScore W2106994165C31972630 @default.
- W2106994165 hasConceptScore W2106994165C41008148 @default.
- W2106994165 hasConceptScore W2106994165C89600930 @default.
- W2106994165 hasIssue "19" @default.
- W2106994165 hasLocation W21069941651 @default.
- W2106994165 hasLocation W21069941652 @default.
- W2106994165 hasOpenAccess W2106994165 @default.
- W2106994165 hasPrimaryLocation W21069941651 @default.
- W2106994165 hasRelatedWork W1669643531 @default.
- W2106994165 hasRelatedWork W2005437358 @default.
- W2106994165 hasRelatedWork W2008656436 @default.
- W2106994165 hasRelatedWork W2023558673 @default.
- W2106994165 hasRelatedWork W2039154422 @default.
- W2106994165 hasRelatedWork W2110230079 @default.
- W2106994165 hasRelatedWork W2122581818 @default.
- W2106994165 hasRelatedWork W2134924024 @default.
- W2106994165 hasRelatedWork W2517104666 @default.
- W2106994165 hasRelatedWork W2182382398 @default.
- W2106994165 hasVolume "69" @default.
- W2106994165 isParatext "false" @default.
- W2106994165 isRetracted "false" @default.
- W2106994165 magId "2106994165" @default.
- W2106994165 workType "article" @default.