Matches in SemOpenAlex for { <https://semopenalex.org/work/W2107070877> ?p ?o ?g. }
- W2107070877 endingPage "54" @default.
- W2107070877 startingPage "54" @default.
- W2107070877 abstract "This paper presents the application of a data-driven model, Adaptive Neuro-Fuzzy Inference System (ANFIS) in forecasting flood flow in a river system. ANFIS uses neural network algorithms and fuzzy reasoning to map an input space to an output space. In the present study, ANFIS models are used to forecast common downstream flow rates and flow depths in a river system having multiple inflows. Three different ANFIS model forms: (i) depth-depth (H-H) model, (ii) depth-discharge (H-Q) model and (iii) discharge-discharge (Q-Q) models are considered in this study. The models are used for forecasting one-hour ahead common downstream flow rates and flow depths in a river system based on past upstream flows. The flow and flow depths data are divided arbitrarily into different categories (2, 3, 4, 6) and different number of membership functions (Triangular, Gaussian, Trapezoidal and Bell) selecting two categories with Gaussian input and constant output membership functions based on trial and error. Performances of the ANFIS model with selected categories and membership functions are tested and verified by applying a time-series model, Autoregressive Integrated Moving Average (ARIMA) to the same river system. ARIMA has been successfully used in time-series forecasting leading to satisfactory performances. A further validation of the ANFIS model has been done by applying it to another river basin, Tar River Basin in USA. The results evaluated on the basis of standard statistical criteria showed improved performances by the ANFIS depth-depth forecasting models. The results also indicate that performances of the ANFIS models with multiple inflows are more satisfactory and closely follow performances of the ARIMA models. The study demonstrates application s of the multiple inflows ANFIS models in forecasting downstream flood flow and flow depth in a river system." @default.
- W2107070877 created "2016-06-24" @default.
- W2107070877 creator A5029673794 @default.
- W2107070877 creator A5057335640 @default.
- W2107070877 date "2013-07-28" @default.
- W2107070877 modified "2023-09-30" @default.
- W2107070877 title "Flood Flow Modeling in a River System Using Adaptive Neuro-Fuzzy Inference System" @default.
- W2107070877 cites W1672235175 @default.
- W2107070877 cites W1965003599 @default.
- W2107070877 cites W1975307294 @default.
- W2107070877 cites W1984803375 @default.
- W2107070877 cites W1992006292 @default.
- W2107070877 cites W2003241794 @default.
- W2107070877 cites W2019207321 @default.
- W2107070877 cites W2024906312 @default.
- W2107070877 cites W2031292142 @default.
- W2107070877 cites W2058945048 @default.
- W2107070877 cites W2063756720 @default.
- W2107070877 cites W2065105535 @default.
- W2107070877 cites W2074770406 @default.
- W2107070877 cites W2103414828 @default.
- W2107070877 cites W2103728465 @default.
- W2107070877 cites W2112435054 @default.
- W2107070877 cites W2115766178 @default.
- W2107070877 cites W2120683406 @default.
- W2107070877 cites W2126289419 @default.
- W2107070877 cites W2127266322 @default.
- W2107070877 cites W2136250054 @default.
- W2107070877 cites W2114001875 @default.
- W2107070877 doi "https://doi.org/10.5296/emsd.v2i2.3738" @default.
- W2107070877 hasPublicationYear "2013" @default.
- W2107070877 type Work @default.
- W2107070877 sameAs 2107070877 @default.
- W2107070877 citedByCount "16" @default.
- W2107070877 countsByYear W21070708772015 @default.
- W2107070877 countsByYear W21070708772016 @default.
- W2107070877 countsByYear W21070708772018 @default.
- W2107070877 countsByYear W21070708772019 @default.
- W2107070877 countsByYear W21070708772020 @default.
- W2107070877 countsByYear W21070708772021 @default.
- W2107070877 countsByYear W21070708772022 @default.
- W2107070877 crossrefType "journal-article" @default.
- W2107070877 hasAuthorship W2107070877A5029673794 @default.
- W2107070877 hasAuthorship W2107070877A5057335640 @default.
- W2107070877 hasBestOaLocation W21070708771 @default.
- W2107070877 hasConcept C105795698 @default.
- W2107070877 hasConcept C127313418 @default.
- W2107070877 hasConcept C151406439 @default.
- W2107070877 hasConcept C153294291 @default.
- W2107070877 hasConcept C154945302 @default.
- W2107070877 hasConcept C159877910 @default.
- W2107070877 hasConcept C166957645 @default.
- W2107070877 hasConcept C183195422 @default.
- W2107070877 hasConcept C186108316 @default.
- W2107070877 hasConcept C187320778 @default.
- W2107070877 hasConcept C195975749 @default.
- W2107070877 hasConcept C205649164 @default.
- W2107070877 hasConcept C24338571 @default.
- W2107070877 hasConcept C2524010 @default.
- W2107070877 hasConcept C29470771 @default.
- W2107070877 hasConcept C33923547 @default.
- W2107070877 hasConcept C38349280 @default.
- W2107070877 hasConcept C39432304 @default.
- W2107070877 hasConcept C41008148 @default.
- W2107070877 hasConcept C58166 @default.
- W2107070877 hasConcept C74256435 @default.
- W2107070877 hasConcept C76886044 @default.
- W2107070877 hasConceptScore W2107070877C105795698 @default.
- W2107070877 hasConceptScore W2107070877C127313418 @default.
- W2107070877 hasConceptScore W2107070877C151406439 @default.
- W2107070877 hasConceptScore W2107070877C153294291 @default.
- W2107070877 hasConceptScore W2107070877C154945302 @default.
- W2107070877 hasConceptScore W2107070877C159877910 @default.
- W2107070877 hasConceptScore W2107070877C166957645 @default.
- W2107070877 hasConceptScore W2107070877C183195422 @default.
- W2107070877 hasConceptScore W2107070877C186108316 @default.
- W2107070877 hasConceptScore W2107070877C187320778 @default.
- W2107070877 hasConceptScore W2107070877C195975749 @default.
- W2107070877 hasConceptScore W2107070877C205649164 @default.
- W2107070877 hasConceptScore W2107070877C24338571 @default.
- W2107070877 hasConceptScore W2107070877C2524010 @default.
- W2107070877 hasConceptScore W2107070877C29470771 @default.
- W2107070877 hasConceptScore W2107070877C33923547 @default.
- W2107070877 hasConceptScore W2107070877C38349280 @default.
- W2107070877 hasConceptScore W2107070877C39432304 @default.
- W2107070877 hasConceptScore W2107070877C41008148 @default.
- W2107070877 hasConceptScore W2107070877C58166 @default.
- W2107070877 hasConceptScore W2107070877C74256435 @default.
- W2107070877 hasConceptScore W2107070877C76886044 @default.
- W2107070877 hasIssue "2" @default.
- W2107070877 hasLocation W21070708771 @default.
- W2107070877 hasLocation W21070708772 @default.
- W2107070877 hasOpenAccess W2107070877 @default.
- W2107070877 hasPrimaryLocation W21070708771 @default.
- W2107070877 hasRelatedWork W1653723966 @default.
- W2107070877 hasRelatedWork W1952992060 @default.
- W2107070877 hasRelatedWork W2072881173 @default.
- W2107070877 hasRelatedWork W2091996104 @default.