Matches in SemOpenAlex for { <https://semopenalex.org/work/W2107202213> ?p ?o ?g. }
- W2107202213 endingPage "615" @default.
- W2107202213 startingPage "611" @default.
- W2107202213 abstract "Genome-scale DNA methylation maps over early human embryogenesis and embryonic stem cell derivation provide insights into shared and unique modes of regulation when compared to the mouse model, including relationships to gene expression, transposable element activity, and maternal-specific methylation. Global patterns of DNA methylation are drastically reprogrammed in primordial germ cells and early embryonic development in mammals. This reprogramming has been well characterized in mouse embryos, but a detailed understanding of DNA methylation dynamics in human embryos is lacking. Two papers published this week [in this issue of Nature] reveal there is a massive loss of DNA methylation from most of the human genome immediately after fertilization, confirming that this epigenetic reprogramming is an evolutionarily conserved feature of development. Hongshan Guo et al. produced base-resolution maps of DNA methylation for human gametes and at several developmental stages of embryogenesis. Zachary Smith et al. obtained similar maps of DNA methylation at several developmental stages of early human embryogenesis and during derivation of human embryonic stem cell lines. The studies provide insights into differences between mouse and human methylation dynamics and the functional relationship between DNA methylation and the expression of genes and transposable elements. In mammals, cytosine methylation is predominantly restricted to CpG dinucleotides and stably distributed across the genome, with local, cell-type-specific regulation directed by DNA binding factors1,2,3. This comparatively static landscape is in marked contrast with the events of fertilization, during which the paternal genome is globally reprogrammed. Paternal genome demethylation includes the majority of CpGs, although methylation remains detectable at several notable features4,5,6,7. These dynamics have been extensively characterized in the mouse, with only limited observations available in other mammals, and direct measurements are required to understand the extent to which early embryonic landscapes are conserved8,9,10. We present genome-scale DNA methylation maps of human preimplantation development and embryonic stem cell derivation, confirming a transient state of global hypomethylation that includes most CpGs, while sites of residual maintenance are primarily restricted to gene bodies. Although most features share similar dynamics to those in mouse, maternally contributed methylation is divergently targeted to species-specific sets of CpG island promoters that extend beyond known imprint control regions. Retrotransposon regulation is also highly diverse, and transitions from maternally to embryonically expressed elements. Together, our data confirm that paternal genome demethylation is a general attribute of early mammalian development that is characterized by distinct modes of epigenetic regulation." @default.
- W2107202213 created "2016-06-24" @default.
- W2107202213 creator A5004067604 @default.
- W2107202213 creator A5031703305 @default.
- W2107202213 creator A5032021891 @default.
- W2107202213 creator A5034179784 @default.
- W2107202213 creator A5053566696 @default.
- W2107202213 creator A5062653422 @default.
- W2107202213 creator A5064730165 @default.
- W2107202213 creator A5075548906 @default.
- W2107202213 date "2014-07-23" @default.
- W2107202213 modified "2023-10-11" @default.
- W2107202213 title "DNA methylation dynamics of the human preimplantation embryo" @default.
- W2107202213 cites W133060549 @default.
- W2107202213 cites W1964895626 @default.
- W2107202213 cites W1981030303 @default.
- W2107202213 cites W1993419284 @default.
- W2107202213 cites W2001499488 @default.
- W2107202213 cites W2006557744 @default.
- W2107202213 cites W2007439698 @default.
- W2107202213 cites W2011861577 @default.
- W2107202213 cites W2034219651 @default.
- W2107202213 cites W2035169894 @default.
- W2107202213 cites W2039053594 @default.
- W2107202213 cites W2040741651 @default.
- W2107202213 cites W2044282102 @default.
- W2107202213 cites W2062098224 @default.
- W2107202213 cites W2070166996 @default.
- W2107202213 cites W2096391240 @default.
- W2107202213 cites W2102868331 @default.
- W2107202213 cites W2106209048 @default.
- W2107202213 cites W2106557257 @default.
- W2107202213 cites W2107454957 @default.
- W2107202213 cites W2111041757 @default.
- W2107202213 cites W2114970231 @default.
- W2107202213 cites W2123075558 @default.
- W2107202213 cites W2126053533 @default.
- W2107202213 cites W2133277576 @default.
- W2107202213 cites W2145034240 @default.
- W2107202213 cites W2152030944 @default.
- W2107202213 cites W2161224111 @default.
- W2107202213 cites W2163327652 @default.
- W2107202213 cites W2171441055 @default.
- W2107202213 cites W2182746672 @default.
- W2107202213 doi "https://doi.org/10.1038/nature13581" @default.
- W2107202213 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4178976" @default.
- W2107202213 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25079558" @default.
- W2107202213 hasPublicationYear "2014" @default.
- W2107202213 type Work @default.
- W2107202213 sameAs 2107202213 @default.
- W2107202213 citedByCount "461" @default.
- W2107202213 countsByYear W21072022132013 @default.
- W2107202213 countsByYear W21072022132014 @default.
- W2107202213 countsByYear W21072022132015 @default.
- W2107202213 countsByYear W21072022132016 @default.
- W2107202213 countsByYear W21072022132017 @default.
- W2107202213 countsByYear W21072022132018 @default.
- W2107202213 countsByYear W21072022132019 @default.
- W2107202213 countsByYear W21072022132020 @default.
- W2107202213 countsByYear W21072022132021 @default.
- W2107202213 countsByYear W21072022132022 @default.
- W2107202213 countsByYear W21072022132023 @default.
- W2107202213 crossrefType "journal-article" @default.
- W2107202213 hasAuthorship W2107202213A5004067604 @default.
- W2107202213 hasAuthorship W2107202213A5031703305 @default.
- W2107202213 hasAuthorship W2107202213A5032021891 @default.
- W2107202213 hasAuthorship W2107202213A5034179784 @default.
- W2107202213 hasAuthorship W2107202213A5053566696 @default.
- W2107202213 hasAuthorship W2107202213A5062653422 @default.
- W2107202213 hasAuthorship W2107202213A5064730165 @default.
- W2107202213 hasAuthorship W2107202213A5075548906 @default.
- W2107202213 hasBestOaLocation W21072022132 @default.
- W2107202213 hasConcept C104317684 @default.
- W2107202213 hasConcept C121912465 @default.
- W2107202213 hasConcept C140173407 @default.
- W2107202213 hasConcept C141231307 @default.
- W2107202213 hasConcept C150194340 @default.
- W2107202213 hasConcept C163002167 @default.
- W2107202213 hasConcept C16824249 @default.
- W2107202213 hasConcept C190727270 @default.
- W2107202213 hasConcept C201492766 @default.
- W2107202213 hasConcept C33288867 @default.
- W2107202213 hasConcept C37080517 @default.
- W2107202213 hasConcept C41091548 @default.
- W2107202213 hasConcept C4918238 @default.
- W2107202213 hasConcept C54355233 @default.
- W2107202213 hasConcept C552990157 @default.
- W2107202213 hasConcept C77255625 @default.
- W2107202213 hasConcept C86803240 @default.
- W2107202213 hasConceptScore W2107202213C104317684 @default.
- W2107202213 hasConceptScore W2107202213C121912465 @default.
- W2107202213 hasConceptScore W2107202213C140173407 @default.
- W2107202213 hasConceptScore W2107202213C141231307 @default.
- W2107202213 hasConceptScore W2107202213C150194340 @default.
- W2107202213 hasConceptScore W2107202213C163002167 @default.
- W2107202213 hasConceptScore W2107202213C16824249 @default.
- W2107202213 hasConceptScore W2107202213C190727270 @default.
- W2107202213 hasConceptScore W2107202213C201492766 @default.