Matches in SemOpenAlex for { <https://semopenalex.org/work/W2107265013> ?p ?o ?g. }
- W2107265013 endingPage "441" @default.
- W2107265013 startingPage "428" @default.
- W2107265013 abstract "Classifier design for a given classification task needs to take into consideration both the complexity of the classifier and the size of the dataset that is available for training the classifier. With limited training data, as often is the situation in computer-aided diagnosis of medical images, a classifier with simple structure (e.g., a linear classifier) is more robust and therefore preferred. We propose a novel two-class classifier, which we call a hybrid linear/nonlinear classifier (HLNLC), that involves two stages: the input features are linearly combined to form a scalar variable in the first stage and then the likelihood ratio of the scalar variable is used as the decision variable for classification. We first develop the theory of HLNLC by assuming that the feature data follow normal distributions. We show that the commonly used Fisher's linear discriminant function is generally not the optimal linear function in the first stage of the HLNLC. We formulate an optimization problem to solve for the optimal linear function in the first stage of the HLNLC, i.e., the linear function that maximizes the area under the receiver operating characteristic (ROC) curve of the HLNLC. For practical applications, we propose a robust implementation of the HLNLC by making a loose assumption that the two-class feature data arise from a pair of latent (rather than explicit) multivariate normal distributions. The novel hybrid classifier fills a gap between linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) in the sense that both its theoretical performance and its complexity lie between those of the LDA and those of the QDA. Simulation studies show that the hybrid linear/nonlinear classifier performs better than LDA without increasing the classifier complexity accordingly. With a finite number of training samples, the HLNLC can perform better than that of the ideal observer due to its simplicity. Finally, we demonstrate the application of the HLNLC in computer-aided diagnosis of breast lesions in ultrasound images." @default.
- W2107265013 created "2016-06-24" @default.
- W2107265013 creator A5013024206 @default.
- W2107265013 creator A5024321936 @default.
- W2107265013 creator A5049042648 @default.
- W2107265013 creator A5091837883 @default.
- W2107265013 date "2010-02-01" @default.
- W2107265013 modified "2023-10-08" @default.
- W2107265013 title "A Novel Hybrid Linear/Nonlinear Classifier for Two-Class Classification: Theory, Algorithm, and Applications" @default.
- W2107265013 cites W1963582808 @default.
- W2107265013 cites W1963790578 @default.
- W2107265013 cites W1965751196 @default.
- W2107265013 cites W1968114652 @default.
- W2107265013 cites W1978518538 @default.
- W2107265013 cites W1981103483 @default.
- W2107265013 cites W1985804137 @default.
- W2107265013 cites W1990534247 @default.
- W2107265013 cites W1990985109 @default.
- W2107265013 cites W1992489994 @default.
- W2107265013 cites W1996064393 @default.
- W2107265013 cites W2010660394 @default.
- W2107265013 cites W2015056255 @default.
- W2107265013 cites W2016834007 @default.
- W2107265013 cites W2035950812 @default.
- W2107265013 cites W2036255459 @default.
- W2107265013 cites W2038037430 @default.
- W2107265013 cites W2038839211 @default.
- W2107265013 cites W2043618875 @default.
- W2107265013 cites W2046560522 @default.
- W2107265013 cites W2049172236 @default.
- W2107265013 cites W2059165786 @default.
- W2107265013 cites W2061295593 @default.
- W2107265013 cites W2069401973 @default.
- W2107265013 cites W2091886411 @default.
- W2107265013 cites W2118291747 @default.
- W2107265013 cites W26510586 @default.
- W2107265013 cites W2997715027 @default.
- W2107265013 cites W349464736 @default.
- W2107265013 cites W4238240379 @default.
- W2107265013 doi "https://doi.org/10.1109/tmi.2009.2033596" @default.
- W2107265013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19822471" @default.
- W2107265013 hasPublicationYear "2010" @default.
- W2107265013 type Work @default.
- W2107265013 sameAs 2107265013 @default.
- W2107265013 citedByCount "11" @default.
- W2107265013 countsByYear W21072650132012 @default.
- W2107265013 countsByYear W21072650132013 @default.
- W2107265013 countsByYear W21072650132015 @default.
- W2107265013 countsByYear W21072650132019 @default.
- W2107265013 countsByYear W21072650132022 @default.
- W2107265013 countsByYear W21072650132023 @default.
- W2107265013 crossrefType "journal-article" @default.
- W2107265013 hasAuthorship W2107265013A5013024206 @default.
- W2107265013 hasAuthorship W2107265013A5024321936 @default.
- W2107265013 hasAuthorship W2107265013A5049042648 @default.
- W2107265013 hasAuthorship W2107265013A5091837883 @default.
- W2107265013 hasConcept C11413529 @default.
- W2107265013 hasConcept C119857082 @default.
- W2107265013 hasConcept C12267149 @default.
- W2107265013 hasConcept C139532973 @default.
- W2107265013 hasConcept C153180895 @default.
- W2107265013 hasConcept C154945302 @default.
- W2107265013 hasConcept C173102733 @default.
- W2107265013 hasConcept C181367576 @default.
- W2107265013 hasConcept C185207860 @default.
- W2107265013 hasConcept C31510193 @default.
- W2107265013 hasConcept C33923547 @default.
- W2107265013 hasConcept C41008148 @default.
- W2107265013 hasConcept C52001869 @default.
- W2107265013 hasConcept C52620605 @default.
- W2107265013 hasConcept C69738355 @default.
- W2107265013 hasConcept C95623464 @default.
- W2107265013 hasConceptScore W2107265013C11413529 @default.
- W2107265013 hasConceptScore W2107265013C119857082 @default.
- W2107265013 hasConceptScore W2107265013C12267149 @default.
- W2107265013 hasConceptScore W2107265013C139532973 @default.
- W2107265013 hasConceptScore W2107265013C153180895 @default.
- W2107265013 hasConceptScore W2107265013C154945302 @default.
- W2107265013 hasConceptScore W2107265013C173102733 @default.
- W2107265013 hasConceptScore W2107265013C181367576 @default.
- W2107265013 hasConceptScore W2107265013C185207860 @default.
- W2107265013 hasConceptScore W2107265013C31510193 @default.
- W2107265013 hasConceptScore W2107265013C33923547 @default.
- W2107265013 hasConceptScore W2107265013C41008148 @default.
- W2107265013 hasConceptScore W2107265013C52001869 @default.
- W2107265013 hasConceptScore W2107265013C52620605 @default.
- W2107265013 hasConceptScore W2107265013C69738355 @default.
- W2107265013 hasConceptScore W2107265013C95623464 @default.
- W2107265013 hasIssue "2" @default.
- W2107265013 hasLocation W21072650131 @default.
- W2107265013 hasLocation W21072650132 @default.
- W2107265013 hasOpenAccess W2107265013 @default.
- W2107265013 hasPrimaryLocation W21072650131 @default.
- W2107265013 hasRelatedWork W1965671931 @default.
- W2107265013 hasRelatedWork W2010370304 @default.
- W2107265013 hasRelatedWork W2018458007 @default.
- W2107265013 hasRelatedWork W2040550925 @default.
- W2107265013 hasRelatedWork W2130972437 @default.