Matches in SemOpenAlex for { <https://semopenalex.org/work/W2107369623> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2107369623 endingPage "229" @default.
- W2107369623 startingPage "229" @default.
- W2107369623 abstract "Introduction. Let D be an arbitrary domain on the Riemann sphere (that is, D is an open connected set on the sphere) and let p be a point of D. Let H '(D) denote the space of bounded analytic functions on D. We consider the problem of maximizing If'(p)l for fin H-(D) with If(z)lj< 1 for all z in D, and f(p) =0. In the case when D is the unit disc U and p =0, this is Schwarz's lemma and the solution is classical: the maximum is one and if If'(0) = 1, then f(z) = eiOz for some real constant 0. In the general case, the theory of normal families assures us that there is at least one fo in H (D) with foll? 1 I and fo(p) ? f'(p)I for all f in H (D) bounded by 1 which vanish at p. We call any such function extremal. Theorem 1 of this paper provides an elementary proof that there is only one extremal function. We thus add to our problem the question of investigating the properties of the extremal function. In the case when D is bounded by a finite number of disjoint analytic simple closed curves, the properties of the extremal function have been studied extensively (see [1] and [7]). In this case, the extremal function is known to be analytic over the boundary and to have modulus one there. We show that this is a local property and carries over to all points in the boundary of D where the boundary is sufficiently well behaved, no matter what the remainder of the boundary of D is like. In ?1 we also show that the extremal function is closely related to the problem of removable singularities for bounded analytic functions. In ?2 we discuss a related extremal problem and show that the properties of its solution imply that on many planar domains D, each function analytic and bounded by 1 on D may be approximated uniformly on compact subsets of D by a sequence of inner functions. We also briefly discuss extensions of the results to open Riemann surfaces. Finally, some remarks on previous work on Schwarz's lemma are in order. Carleson [3, pp. 78-82] and Havinson [8, Theorem 9] have previously shown that the extremal function is unique. Our proof differs substantially from each of theirs and is considerably more elementary. Furthermore, it does not make use of any of the results from the finitely-connected case. Also, our Theorems 2 and 3 and a weaker version of Theorem 4 have previously been proved by Havinson [8, Theorems 22, 28, and 20]; however, as in the case of Theorem 1, the proofs given here are appreciably simpler and more elementary. Indeed, part of the motivation for this paper was to find simpler and more transparent proofs of these results. In particular, it is only in the proof of Theorem 5, which describes the behavior" @default.
- W2107369623 created "2016-06-24" @default.
- W2107369623 creator A5027729508 @default.
- W2107369623 date "1969-01-01" @default.
- W2107369623 modified "2023-09-26" @default.
- W2107369623 title "On Schwarz’s lemma and inner functions" @default.
- W2107369623 cites W1565151177 @default.
- W2107369623 cites W185079044 @default.
- W2107369623 cites W1995177232 @default.
- W2107369623 cites W2008407124 @default.
- W2107369623 cites W2037126152 @default.
- W2107369623 cites W2050380549 @default.
- W2107369623 cites W2054413957 @default.
- W2107369623 cites W2055431728 @default.
- W2107369623 cites W2906870473 @default.
- W2107369623 cites W620650252 @default.
- W2107369623 doi "https://doi.org/10.1090/s0002-9947-1969-0240302-2" @default.
- W2107369623 hasPublicationYear "1969" @default.
- W2107369623 type Work @default.
- W2107369623 sameAs 2107369623 @default.
- W2107369623 citedByCount "19" @default.
- W2107369623 countsByYear W21073696232013 @default.
- W2107369623 countsByYear W21073696232017 @default.
- W2107369623 countsByYear W21073696232019 @default.
- W2107369623 countsByYear W21073696232020 @default.
- W2107369623 countsByYear W21073696232021 @default.
- W2107369623 crossrefType "journal-article" @default.
- W2107369623 hasAuthorship W2107369623A5027729508 @default.
- W2107369623 hasBestOaLocation W21073696231 @default.
- W2107369623 hasConcept C121332964 @default.
- W2107369623 hasConcept C135628077 @default.
- W2107369623 hasConcept C174819683 @default.
- W2107369623 hasConcept C18903297 @default.
- W2107369623 hasConcept C198880260 @default.
- W2107369623 hasConcept C202444582 @default.
- W2107369623 hasConcept C2777759810 @default.
- W2107369623 hasConcept C31278502 @default.
- W2107369623 hasConcept C33923547 @default.
- W2107369623 hasConcept C46757340 @default.
- W2107369623 hasConcept C86803240 @default.
- W2107369623 hasConcept C97355855 @default.
- W2107369623 hasConceptScore W2107369623C121332964 @default.
- W2107369623 hasConceptScore W2107369623C135628077 @default.
- W2107369623 hasConceptScore W2107369623C174819683 @default.
- W2107369623 hasConceptScore W2107369623C18903297 @default.
- W2107369623 hasConceptScore W2107369623C198880260 @default.
- W2107369623 hasConceptScore W2107369623C202444582 @default.
- W2107369623 hasConceptScore W2107369623C2777759810 @default.
- W2107369623 hasConceptScore W2107369623C31278502 @default.
- W2107369623 hasConceptScore W2107369623C33923547 @default.
- W2107369623 hasConceptScore W2107369623C46757340 @default.
- W2107369623 hasConceptScore W2107369623C86803240 @default.
- W2107369623 hasConceptScore W2107369623C97355855 @default.
- W2107369623 hasLocation W21073696231 @default.
- W2107369623 hasOpenAccess W2107369623 @default.
- W2107369623 hasPrimaryLocation W21073696231 @default.
- W2107369623 hasRelatedWork W1130300046 @default.
- W2107369623 hasRelatedWork W2071932383 @default.
- W2107369623 hasRelatedWork W2108396430 @default.
- W2107369623 hasRelatedWork W2390038578 @default.
- W2107369623 hasRelatedWork W2568100868 @default.
- W2107369623 hasRelatedWork W2883932958 @default.
- W2107369623 hasRelatedWork W2898867836 @default.
- W2107369623 hasRelatedWork W2951205762 @default.
- W2107369623 hasRelatedWork W1564641468 @default.
- W2107369623 hasRelatedWork W2050028993 @default.
- W2107369623 hasVolume "138" @default.
- W2107369623 isParatext "false" @default.
- W2107369623 isRetracted "false" @default.
- W2107369623 magId "2107369623" @default.
- W2107369623 workType "article" @default.