Matches in SemOpenAlex for { <https://semopenalex.org/work/W2107502680> ?p ?o ?g. }
- W2107502680 endingPage "16196" @default.
- W2107502680 startingPage "16181" @default.
- W2107502680 abstract "Ten‐day backward trajectories are used to determine the origins of air parcels arriving at airborne DC‐8 chemical measurement sites during NASA's Pacific Exploratory Mission‐Tropics A (PEM‐T) that was conducted during August‐October 1996. Those sites at which the air had a common geographical origin and transport history are grouped together, and statistical measures of chemical characteristics are computed. Temporal changes in potential temperature are used to determine whether trajectories experience a significant convective influence during the 10‐day period. Those trajectories that do not experience a significant convective influence are divided into four geographical categories depending on their origins and paths. Air parcels originating over Africa and South America are characterized by enhanced mixing ratios of O 3 , CO, HNO 3 , and PAN. The backward trajectories travel at high altitudes (∼10–11 km), covering long distances due to strong upper‐tropospheric westerly winds. The observed enhancement of combustion‐related species is attributed to biomass burning from distant sources to the west, extending even to South America. The relatively large value of Be‐7 probably is due either to less efficient removal of aerosols from upper tropospheric air or to small stratospheric contributions. Aged marine parcels are found to have relatively small concentrations of burning‐related species. Although these trajectories arrive at a wide range of aircraft altitudes, they do not pass over a land mass during the preceding 10‐day period. Air passing over Australia but no other land mass exhibits a combustion signature; however, photochemical product species such as O 3 and PAN are less enhanced than in the long‐range transport category. These trajectories travel shorter distances and are at lower altitudes (∼5–8 km) than those reaching Africa and/or South America. The combustion influence on these parcels is attributed to biomass burning emissions injected over Australia. That burning is less widespread than in Africa and South America. Finally, trajectories originating over Southeast Asia appear to receive a weak combustion influence. However, compared to Africa and South America, Southeast Asia has a relatively small incidence of biomass burning. There is little combustion input from Australia due to the high transport altitudes compared to the lower heights of the convection. The Southeast Asian parcels exhibit the greatest NO x to ∑NO i ratio of any category, perhaps due to lightning. Parcels experiencing a significant convective influence also are examined. Most of these parcels pass through widespread, persistent convection along either the South Pacific Convergence Zone or Intertropical Convergence Zone approximately 5 days prior to arriving at the aircraft locations. Thus the category mostly represents marine convection. Mixing ratios of peroxides and acids in the convective category are found to be smaller than in parcels not experiencing convection. Small mixing ratios of Be‐7 and Pb‐210 suggest particle removal by precipitation." @default.
- W2107502680 created "2016-06-24" @default.
- W2107502680 creator A5018843232 @default.
- W2107502680 creator A5025206531 @default.
- W2107502680 creator A5028211229 @default.
- W2107502680 creator A5046694694 @default.
- W2107502680 creator A5047070038 @default.
- W2107502680 creator A5047977606 @default.
- W2107502680 creator A5053356595 @default.
- W2107502680 creator A5080309209 @default.
- W2107502680 creator A5090638918 @default.
- W2107502680 date "1999-07-01" @default.
- W2107502680 modified "2023-10-14" @default.
- W2107502680 title "Chemical characteristics of air from differing source regions during the Pacific Exploratory Mission‐Tropics A (PEM‐Tropics A)" @default.
- W2107502680 cites W1583950957 @default.
- W2107502680 cites W1976254731 @default.
- W2107502680 cites W1980006831 @default.
- W2107502680 cites W1980930774 @default.
- W2107502680 cites W1981892667 @default.
- W2107502680 cites W1981974556 @default.
- W2107502680 cites W1983449888 @default.
- W2107502680 cites W1985842505 @default.
- W2107502680 cites W1989419215 @default.
- W2107502680 cites W1989438093 @default.
- W2107502680 cites W1992027337 @default.
- W2107502680 cites W1994145659 @default.
- W2107502680 cites W1994982326 @default.
- W2107502680 cites W1997082974 @default.
- W2107502680 cites W1998286087 @default.
- W2107502680 cites W1999144573 @default.
- W2107502680 cites W2003860301 @default.
- W2107502680 cites W2008757655 @default.
- W2107502680 cites W2013214260 @default.
- W2107502680 cites W2017511513 @default.
- W2107502680 cites W2019450357 @default.
- W2107502680 cites W2020147105 @default.
- W2107502680 cites W2021967616 @default.
- W2107502680 cites W2023441415 @default.
- W2107502680 cites W2023763941 @default.
- W2107502680 cites W2031338238 @default.
- W2107502680 cites W2037470474 @default.
- W2107502680 cites W2047080122 @default.
- W2107502680 cites W2047248406 @default.
- W2107502680 cites W2047734533 @default.
- W2107502680 cites W2053430419 @default.
- W2107502680 cites W2054478615 @default.
- W2107502680 cites W2055060874 @default.
- W2107502680 cites W2057816532 @default.
- W2107502680 cites W2058710340 @default.
- W2107502680 cites W2060152741 @default.
- W2107502680 cites W2065390333 @default.
- W2107502680 cites W2072127498 @default.
- W2107502680 cites W2075072744 @default.
- W2107502680 cites W2075714445 @default.
- W2107502680 cites W2090156683 @default.
- W2107502680 cites W2090240580 @default.
- W2107502680 cites W2099692767 @default.
- W2107502680 cites W2104535926 @default.
- W2107502680 cites W2106109190 @default.
- W2107502680 cites W2112058908 @default.
- W2107502680 cites W2118932200 @default.
- W2107502680 cites W2121716794 @default.
- W2107502680 cites W2124861040 @default.
- W2107502680 cites W2129225156 @default.
- W2107502680 cites W2132710764 @default.
- W2107502680 cites W2135810055 @default.
- W2107502680 cites W2141252745 @default.
- W2107502680 cites W2146906457 @default.
- W2107502680 cites W2162040766 @default.
- W2107502680 cites W2163153216 @default.
- W2107502680 cites W2164081755 @default.
- W2107502680 cites W2167134255 @default.
- W2107502680 cites W2168932198 @default.
- W2107502680 cites W2170902711 @default.
- W2107502680 cites W2174785066 @default.
- W2107502680 cites W2178245170 @default.
- W2107502680 cites W4251898653 @default.
- W2107502680 doi "https://doi.org/10.1029/1999jd900021" @default.
- W2107502680 hasPublicationYear "1999" @default.
- W2107502680 type Work @default.
- W2107502680 sameAs 2107502680 @default.
- W2107502680 citedByCount "30" @default.
- W2107502680 countsByYear W21075026802013 @default.
- W2107502680 countsByYear W21075026802019 @default.
- W2107502680 crossrefType "journal-article" @default.
- W2107502680 hasAuthorship W2107502680A5018843232 @default.
- W2107502680 hasAuthorship W2107502680A5025206531 @default.
- W2107502680 hasAuthorship W2107502680A5028211229 @default.
- W2107502680 hasAuthorship W2107502680A5046694694 @default.
- W2107502680 hasAuthorship W2107502680A5047070038 @default.
- W2107502680 hasAuthorship W2107502680A5047977606 @default.
- W2107502680 hasAuthorship W2107502680A5053356595 @default.
- W2107502680 hasAuthorship W2107502680A5080309209 @default.
- W2107502680 hasAuthorship W2107502680A5090638918 @default.
- W2107502680 hasBestOaLocation W21075026801 @default.
- W2107502680 hasConcept C10899652 @default.
- W2107502680 hasConcept C111603439 @default.
- W2107502680 hasConcept C121332964 @default.