Matches in SemOpenAlex for { <https://semopenalex.org/work/W2107576310> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2107576310 endingPage "194" @default.
- W2107576310 startingPage "183" @default.
- W2107576310 abstract "Abstract Accurate prediction of dewpoint pressure is a critical element in reservoir-engineering calculations. The objective of this paper is to present a novel and highly accurate application of the neural-network model (NNM) to predict dewpoint pressures in retrograde gas reservoirs. We were able to demonstrate that the model described in this paper is more accurate than any presented to date. In addition, the model is simple and is able to duplicate with reasonable accuracy the temperature–dewpoint pressure behavior of constant-composition gas condensate fluids. The neural-network model was developed using a set of 802 experimental constant volume depletion (CVD) data points. To train the neural-network model, a set of 641 experimental data points of CVD for different gas condensate fluids was used. The model was tested with 161 experimental data points, not used during the training process, to prove its accuracy. The study also considered a detailed comparison between the results predicted by this more efficient neural-network model and those predicted by other correlations for estimating dewpoint pressure of retrograde gas. The performance of this improved neural-network model and available correlations was evaluated versus the Peng–Robinson Equation of State (PR-EOS) model for the same reservoir fluid composition, a gas condensate from the Cusiana Field, in Colombia. This improved neural-network model was able to predict the dewpoint pressure with an average absolute error of 8.74%, as a function of temperature, hydrocarbons and non-hydrocarbon compositions, molecular weight, and specific gravity of heptanes-plus fraction. Neural-network models can save calculation time in the prediction of the dewpoint pressures with more reliability than available multiple-regression techniques." @default.
- W2107576310 created "2016-06-24" @default.
- W2107576310 creator A5060990046 @default.
- W2107576310 creator A5066016315 @default.
- W2107576310 creator A5082446578 @default.
- W2107576310 date "2003-03-01" @default.
- W2107576310 modified "2023-10-01" @default.
- W2107576310 title "Improved neural-network model predicts dewpoint pressure of retrograde gases" @default.
- W2107576310 cites W1988555071 @default.
- W2107576310 cites W1990476081 @default.
- W2107576310 cites W2027172543 @default.
- W2107576310 cites W2032741416 @default.
- W2107576310 cites W2037681149 @default.
- W2107576310 cites W2058861469 @default.
- W2107576310 cites W2076259768 @default.
- W2107576310 doi "https://doi.org/10.1016/s0920-4105(02)00352-2" @default.
- W2107576310 hasPublicationYear "2003" @default.
- W2107576310 type Work @default.
- W2107576310 sameAs 2107576310 @default.
- W2107576310 citedByCount "23" @default.
- W2107576310 countsByYear W21075763102012 @default.
- W2107576310 countsByYear W21075763102013 @default.
- W2107576310 countsByYear W21075763102014 @default.
- W2107576310 countsByYear W21075763102015 @default.
- W2107576310 countsByYear W21075763102016 @default.
- W2107576310 countsByYear W21075763102017 @default.
- W2107576310 countsByYear W21075763102018 @default.
- W2107576310 countsByYear W21075763102019 @default.
- W2107576310 countsByYear W21075763102020 @default.
- W2107576310 countsByYear W21075763102021 @default.
- W2107576310 countsByYear W21075763102022 @default.
- W2107576310 countsByYear W21075763102023 @default.
- W2107576310 crossrefType "journal-article" @default.
- W2107576310 hasAuthorship W2107576310A5060990046 @default.
- W2107576310 hasAuthorship W2107576310A5066016315 @default.
- W2107576310 hasAuthorship W2107576310A5082446578 @default.
- W2107576310 hasConcept C121332964 @default.
- W2107576310 hasConcept C127313418 @default.
- W2107576310 hasConcept C153294291 @default.
- W2107576310 hasConcept C154945302 @default.
- W2107576310 hasConcept C39432304 @default.
- W2107576310 hasConcept C41008148 @default.
- W2107576310 hasConcept C50644808 @default.
- W2107576310 hasConcept C78762247 @default.
- W2107576310 hasConcept C82210777 @default.
- W2107576310 hasConceptScore W2107576310C121332964 @default.
- W2107576310 hasConceptScore W2107576310C127313418 @default.
- W2107576310 hasConceptScore W2107576310C153294291 @default.
- W2107576310 hasConceptScore W2107576310C154945302 @default.
- W2107576310 hasConceptScore W2107576310C39432304 @default.
- W2107576310 hasConceptScore W2107576310C41008148 @default.
- W2107576310 hasConceptScore W2107576310C50644808 @default.
- W2107576310 hasConceptScore W2107576310C78762247 @default.
- W2107576310 hasConceptScore W2107576310C82210777 @default.
- W2107576310 hasIssue "3-4" @default.
- W2107576310 hasLocation W21075763101 @default.
- W2107576310 hasOpenAccess W2107576310 @default.
- W2107576310 hasPrimaryLocation W21075763101 @default.
- W2107576310 hasRelatedWork W1964313457 @default.
- W2107576310 hasRelatedWork W2016006456 @default.
- W2107576310 hasRelatedWork W2291216762 @default.
- W2107576310 hasRelatedWork W2325172268 @default.
- W2107576310 hasRelatedWork W2360003197 @default.
- W2107576310 hasRelatedWork W3150025542 @default.
- W2107576310 hasRelatedWork W331290613 @default.
- W2107576310 hasRelatedWork W4210818955 @default.
- W2107576310 hasRelatedWork W4213045659 @default.
- W2107576310 hasRelatedWork W4308164963 @default.
- W2107576310 hasVolume "37" @default.
- W2107576310 isParatext "false" @default.
- W2107576310 isRetracted "false" @default.
- W2107576310 magId "2107576310" @default.
- W2107576310 workType "article" @default.