Matches in SemOpenAlex for { <https://semopenalex.org/work/W2107718072> ?p ?o ?g. }
- W2107718072 endingPage "17" @default.
- W2107718072 startingPage "17" @default.
- W2107718072 abstract "Proteomics may help to detect subtle pollution-related changes, such as responses to mixture pollution at low concentrations, where clear signs of toxicity are absent. The challenges associated with the analysis of large-scale multivariate proteomic datasets have been widely discussed in medical research and biomarker discovery. This concept has been introduced to ecotoxicology only recently, so data processing and classification analysis need to be refined before they can be readily applied in biomarker discovery and monitoring studies.Data sets obtained from a case study of oil pollution in the Blue mussel were investigated for differential protein expression by retentate chromatography-mass spectrometry and decision tree classification. Different tissues and different settings were used to evaluate classifiers towards their discriminatory power. It was found that, due the intrinsic variability of the data sets, reliable classification of unknown samples could only be achieved on a broad statistical basis (n > 60) with the observed expression changes comprising high statistical significance and sufficient amplitude. The application of stringent criteria to guard against overfitting of the models eventually allowed satisfactory classification for only one of the investigated data sets and settings.Machine learning techniques provide a promising approach to process and extract informative expression signatures from high-dimensional mass-spectrometry data. Even though characterisation of the proteins forming the expression signatures would be ideal, knowledge of the specific proteins is not mandatory for effective class discrimination. This may constitute a new biomarker approach in ecotoxicology, where working with organisms, which do not have sequenced genomes render protein identification by database searching problematic. However, data processing has to be critically evaluated and statistical constraints have to be considered before supervised classification algorithms are employed." @default.
- W2107718072 created "2016-06-24" @default.
- W2107718072 creator A5009515903 @default.
- W2107718072 creator A5019820405 @default.
- W2107718072 creator A5043353295 @default.
- W2107718072 creator A5081787413 @default.
- W2107718072 date "2006-01-01" @default.
- W2107718072 modified "2023-10-17" @default.
- W2107718072 cites W1651455521 @default.
- W2107718072 cites W1819658147 @default.
- W2107718072 cites W1965575244 @default.
- W2107718072 cites W1965848256 @default.
- W2107718072 cites W1966614381 @default.
- W2107718072 cites W1967258557 @default.
- W2107718072 cites W1973493176 @default.
- W2107718072 cites W1976120363 @default.
- W2107718072 cites W1984044921 @default.
- W2107718072 cites W1984228258 @default.
- W2107718072 cites W1984398128 @default.
- W2107718072 cites W1987266144 @default.
- W2107718072 cites W1992102076 @default.
- W2107718072 cites W1994622929 @default.
- W2107718072 cites W1996207491 @default.
- W2107718072 cites W2000389809 @default.
- W2107718072 cites W2005972275 @default.
- W2107718072 cites W2021551481 @default.
- W2107718072 cites W2022441134 @default.
- W2107718072 cites W2023998996 @default.
- W2107718072 cites W2026097216 @default.
- W2107718072 cites W2027926317 @default.
- W2107718072 cites W2029846915 @default.
- W2107718072 cites W2030419944 @default.
- W2107718072 cites W2030694040 @default.
- W2107718072 cites W2043710736 @default.
- W2107718072 cites W2046853584 @default.
- W2107718072 cites W2046964618 @default.
- W2107718072 cites W2050393146 @default.
- W2107718072 cites W2050880521 @default.
- W2107718072 cites W2051117476 @default.
- W2107718072 cites W2053102141 @default.
- W2107718072 cites W2053112593 @default.
- W2107718072 cites W2059466378 @default.
- W2107718072 cites W2081466462 @default.
- W2107718072 cites W2087821682 @default.
- W2107718072 cites W2094639848 @default.
- W2107718072 cites W2102342618 @default.
- W2107718072 cites W2105696555 @default.
- W2107718072 cites W2107097235 @default.
- W2107718072 cites W2113944500 @default.
- W2107718072 cites W2127683830 @default.
- W2107718072 cites W2128635872 @default.
- W2107718072 cites W2131865610 @default.
- W2107718072 cites W2133205049 @default.
- W2107718072 cites W2146264968 @default.
- W2107718072 cites W2147452222 @default.
- W2107718072 cites W2155598851 @default.
- W2107718072 cites W2169251214 @default.
- W2107718072 doi "https://doi.org/10.1186/1477-5956-4-17" @default.
- W2107718072 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1592071" @default.
- W2107718072 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16970821" @default.
- W2107718072 hasPublicationYear "2006" @default.
- W2107718072 type Work @default.
- W2107718072 sameAs 2107718072 @default.
- W2107718072 citedByCount "26" @default.
- W2107718072 countsByYear W21077180722012 @default.
- W2107718072 countsByYear W21077180722013 @default.
- W2107718072 countsByYear W21077180722014 @default.
- W2107718072 countsByYear W21077180722015 @default.
- W2107718072 countsByYear W21077180722016 @default.
- W2107718072 countsByYear W21077180722021 @default.
- W2107718072 countsByYear W21077180722023 @default.
- W2107718072 crossrefType "journal-article" @default.
- W2107718072 hasAuthorship W2107718072A5009515903 @default.
- W2107718072 hasAuthorship W2107718072A5019820405 @default.
- W2107718072 hasAuthorship W2107718072A5043353295 @default.
- W2107718072 hasAuthorship W2107718072A5081787413 @default.
- W2107718072 hasBestOaLocation W21077180721 @default.
- W2107718072 hasConcept C104317684 @default.
- W2107718072 hasConcept C116834253 @default.
- W2107718072 hasConcept C119857082 @default.
- W2107718072 hasConcept C124101348 @default.
- W2107718072 hasConcept C124535831 @default.
- W2107718072 hasConcept C154945302 @default.
- W2107718072 hasConcept C22019652 @default.
- W2107718072 hasConcept C2781197716 @default.
- W2107718072 hasConcept C41008148 @default.
- W2107718072 hasConcept C46111723 @default.
- W2107718072 hasConcept C50644808 @default.
- W2107718072 hasConcept C55493867 @default.
- W2107718072 hasConcept C59822182 @default.
- W2107718072 hasConcept C70721500 @default.
- W2107718072 hasConcept C84525736 @default.
- W2107718072 hasConcept C86803240 @default.
- W2107718072 hasConceptScore W2107718072C104317684 @default.
- W2107718072 hasConceptScore W2107718072C116834253 @default.
- W2107718072 hasConceptScore W2107718072C119857082 @default.
- W2107718072 hasConceptScore W2107718072C124101348 @default.
- W2107718072 hasConceptScore W2107718072C124535831 @default.