Matches in SemOpenAlex for { <https://semopenalex.org/work/W2107937072> ?p ?o ?g. }
- W2107937072 endingPage "712" @default.
- W2107937072 startingPage "689" @default.
- W2107937072 abstract "Inaccurate inference of positional homologies in multiple sequence alignments and systematic errors introduced by alignment heuristics obfuscate phylogenetic inference. Alignment masking, the elimination of phylogenetically uninformative or misleading sites from an alignment before phylogenetic analysis, is a common practice in phylogenetic analysis. Although masking is often done manually, automated methods are necessary to handle the much larger data sets being prepared today. In this study, we introduce the concept of subsplits and demonstrate their use in extracting phylogenetic signal from alignments. We design a clustering approach for alignment masking where each cluster contains similar columns—similarity being defined on the basis of compatible subsplits; our approach then identifies noisy clusters and eliminates them. Trees inferred from the columns in the retained clusters are found to be topologically closer to the reference trees. We test our method on numerous standard benchmarks (both synthetic and biological data sets) and compare its performance with other methods of alignment masking. We find that our method can eliminate sites more accurately than other methods, particularly on divergent data, and can improve the topologies of the inferred trees in likelihood-based analyses. Software available upon request from the author." @default.
- W2107937072 created "2016-06-24" @default.
- W2107937072 creator A5020851510 @default.
- W2107937072 date "2012-11-27" @default.
- W2107937072 modified "2023-10-18" @default.
- W2107937072 title "A Method of Alignment Masking for Refining the Phylogenetic Signal of Multiple Sequence Alignments" @default.
- W2107937072 cites W1486325159 @default.
- W2107937072 cites W1870852322 @default.
- W2107937072 cites W1963957860 @default.
- W2107937072 cites W1991669894 @default.
- W2107937072 cites W1995988830 @default.
- W2107937072 cites W1998152054 @default.
- W2107937072 cites W2002638840 @default.
- W2107937072 cites W2004628134 @default.
- W2107937072 cites W2007668764 @default.
- W2107937072 cites W2012395524 @default.
- W2107937072 cites W2015710052 @default.
- W2107937072 cites W2017500947 @default.
- W2107937072 cites W2019581837 @default.
- W2107937072 cites W2023900184 @default.
- W2107937072 cites W2024398948 @default.
- W2107937072 cites W2024802530 @default.
- W2107937072 cites W2028942402 @default.
- W2107937072 cites W2036684328 @default.
- W2107937072 cites W2060425093 @default.
- W2107937072 cites W2064153754 @default.
- W2107937072 cites W2068225247 @default.
- W2107937072 cites W2073630766 @default.
- W2107937072 cites W2087347919 @default.
- W2107937072 cites W2087681583 @default.
- W2107937072 cites W2095095286 @default.
- W2107937072 cites W2095690216 @default.
- W2107937072 cites W2097020631 @default.
- W2107937072 cites W2097039950 @default.
- W2107937072 cites W2097382368 @default.
- W2107937072 cites W2097730814 @default.
- W2107937072 cites W2099400989 @default.
- W2107937072 cites W2101969356 @default.
- W2107937072 cites W2106882534 @default.
- W2107937072 cites W2111551123 @default.
- W2107937072 cites W2116007667 @default.
- W2107937072 cites W2117059491 @default.
- W2107937072 cites W2119641595 @default.
- W2107937072 cites W2119997450 @default.
- W2107937072 cites W2120958393 @default.
- W2107937072 cites W2121157272 @default.
- W2107937072 cites W2124790653 @default.
- W2107937072 cites W2127556561 @default.
- W2107937072 cites W2127774996 @default.
- W2107937072 cites W2127860913 @default.
- W2107937072 cites W2132972885 @default.
- W2107937072 cites W2137032400 @default.
- W2107937072 cites W2140890018 @default.
- W2107937072 cites W2141506506 @default.
- W2107937072 cites W2142056356 @default.
- W2107937072 cites W2144362290 @default.
- W2107937072 cites W2148450265 @default.
- W2107937072 cites W2150693733 @default.
- W2107937072 cites W2153800802 @default.
- W2107937072 cites W2154085147 @default.
- W2107937072 cites W2155320525 @default.
- W2107937072 cites W2157451851 @default.
- W2107937072 cites W2157517827 @default.
- W2107937072 cites W2159368494 @default.
- W2107937072 cites W2159957100 @default.
- W2107937072 cites W2163892779 @default.
- W2107937072 cites W2165232124 @default.
- W2107937072 cites W2167359290 @default.
- W2107937072 cites W2168198916 @default.
- W2107937072 cites W2168696662 @default.
- W2107937072 cites W2168783599 @default.
- W2107937072 cites W2171951012 @default.
- W2107937072 cites W2312411742 @default.
- W2107937072 cites W2334863548 @default.
- W2107937072 cites W4231041617 @default.
- W2107937072 cites W4244611704 @default.
- W2107937072 cites W4254244103 @default.
- W2107937072 doi "https://doi.org/10.1093/molbev/mss264" @default.
- W2107937072 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23193120" @default.
- W2107937072 hasPublicationYear "2012" @default.
- W2107937072 type Work @default.
- W2107937072 sameAs 2107937072 @default.
- W2107937072 citedByCount "13" @default.
- W2107937072 countsByYear W21079370722014 @default.
- W2107937072 countsByYear W21079370722015 @default.
- W2107937072 countsByYear W21079370722017 @default.
- W2107937072 countsByYear W21079370722018 @default.
- W2107937072 countsByYear W21079370722019 @default.
- W2107937072 countsByYear W21079370722020 @default.
- W2107937072 countsByYear W21079370722021 @default.
- W2107937072 countsByYear W21079370722022 @default.
- W2107937072 crossrefType "journal-article" @default.
- W2107937072 hasAuthorship W2107937072A5020851510 @default.
- W2107937072 hasBestOaLocation W21079370721 @default.
- W2107937072 hasConcept C103278499 @default.
- W2107937072 hasConcept C104317684 @default.
- W2107937072 hasConcept C111919701 @default.
- W2107937072 hasConcept C113174947 @default.