Matches in SemOpenAlex for { <https://semopenalex.org/work/W2107954294> ?p ?o ?g. }
- W2107954294 endingPage "1556" @default.
- W2107954294 startingPage "1548" @default.
- W2107954294 abstract "Vector Auto-regressive models (VAR) are useful tools for analyzing time series data. In quite a few modern time series modelling tasks, the collection of reliable time series turns out to be a major challenge, either due to the slow progression of the dynamic process of interest, or inaccessibility of repetitive measurements of the same dynamic process over time. In those situations, however, we observe that it is often easier to collect a large amount of non-sequence samples, or snapshots of the dynamic process of interest. In this work, we assume a small amount of time series data are available, and propose methods to incorporate non-sequence data into penalized least-square estimation of VAR models. We consider non-sequence data as samples drawn from the stationary distribution of the underlying VAR model, and devise a novel penalization scheme based on the Lyapunov equation concerning the covariance of the stationary distribution. Experiments on synthetic and video data demonstrate the effectiveness of the proposed methods." @default.
- W2107954294 created "2016-06-24" @default.
- W2107954294 creator A5026244838 @default.
- W2107954294 creator A5055199976 @default.
- W2107954294 date "2011-12-12" @default.
- W2107954294 modified "2023-09-24" @default.
- W2107954294 title "Learning Auto-regressive Models from Sequence and Non-sequence Data" @default.
- W2107954294 cites W1960700909 @default.
- W2107954294 cites W1970431297 @default.
- W2107954294 cites W1978259121 @default.
- W2107954294 cites W1990512452 @default.
- W2107954294 cites W2036799174 @default.
- W2107954294 cites W2062125287 @default.
- W2107954294 cites W2097150846 @default.
- W2107954294 cites W2108688899 @default.
- W2107954294 cites W2119963163 @default.
- W2107954294 cites W2132663737 @default.
- W2107954294 cites W2134752891 @default.
- W2107954294 cites W2153720810 @default.
- W2107954294 cites W2165408259 @default.
- W2107954294 cites W2168834831 @default.
- W2107954294 cites W2613784664 @default.
- W2107954294 cites W2798766386 @default.
- W2107954294 cites W2807184692 @default.
- W2107954294 cites W3146166473 @default.
- W2107954294 cites W3195084822 @default.
- W2107954294 cites W2081622708 @default.
- W2107954294 hasPublicationYear "2011" @default.
- W2107954294 type Work @default.
- W2107954294 sameAs 2107954294 @default.
- W2107954294 citedByCount "8" @default.
- W2107954294 countsByYear W21079542942013 @default.
- W2107954294 countsByYear W21079542942014 @default.
- W2107954294 countsByYear W21079542942016 @default.
- W2107954294 countsByYear W21079542942018 @default.
- W2107954294 crossrefType "proceedings-article" @default.
- W2107954294 hasAuthorship W2107954294A5026244838 @default.
- W2107954294 hasAuthorship W2107954294A5055199976 @default.
- W2107954294 hasConcept C105795698 @default.
- W2107954294 hasConcept C110405555 @default.
- W2107954294 hasConcept C111919701 @default.
- W2107954294 hasConcept C11413529 @default.
- W2107954294 hasConcept C119857082 @default.
- W2107954294 hasConcept C124101348 @default.
- W2107954294 hasConcept C143724316 @default.
- W2107954294 hasConcept C149782125 @default.
- W2107954294 hasConcept C151406439 @default.
- W2107954294 hasConcept C151730666 @default.
- W2107954294 hasConcept C154945302 @default.
- W2107954294 hasConcept C159877910 @default.
- W2107954294 hasConcept C178650346 @default.
- W2107954294 hasConcept C2778112365 @default.
- W2107954294 hasConcept C33923547 @default.
- W2107954294 hasConcept C41008148 @default.
- W2107954294 hasConcept C54355233 @default.
- W2107954294 hasConcept C67186912 @default.
- W2107954294 hasConcept C77088390 @default.
- W2107954294 hasConcept C86803240 @default.
- W2107954294 hasConcept C98045186 @default.
- W2107954294 hasConceptScore W2107954294C105795698 @default.
- W2107954294 hasConceptScore W2107954294C110405555 @default.
- W2107954294 hasConceptScore W2107954294C111919701 @default.
- W2107954294 hasConceptScore W2107954294C11413529 @default.
- W2107954294 hasConceptScore W2107954294C119857082 @default.
- W2107954294 hasConceptScore W2107954294C124101348 @default.
- W2107954294 hasConceptScore W2107954294C143724316 @default.
- W2107954294 hasConceptScore W2107954294C149782125 @default.
- W2107954294 hasConceptScore W2107954294C151406439 @default.
- W2107954294 hasConceptScore W2107954294C151730666 @default.
- W2107954294 hasConceptScore W2107954294C154945302 @default.
- W2107954294 hasConceptScore W2107954294C159877910 @default.
- W2107954294 hasConceptScore W2107954294C178650346 @default.
- W2107954294 hasConceptScore W2107954294C2778112365 @default.
- W2107954294 hasConceptScore W2107954294C33923547 @default.
- W2107954294 hasConceptScore W2107954294C41008148 @default.
- W2107954294 hasConceptScore W2107954294C54355233 @default.
- W2107954294 hasConceptScore W2107954294C67186912 @default.
- W2107954294 hasConceptScore W2107954294C77088390 @default.
- W2107954294 hasConceptScore W2107954294C86803240 @default.
- W2107954294 hasConceptScore W2107954294C98045186 @default.
- W2107954294 hasLocation W21079542941 @default.
- W2107954294 hasOpenAccess W2107954294 @default.
- W2107954294 hasPrimaryLocation W21079542941 @default.
- W2107954294 hasRelatedWork W1822937469 @default.
- W2107954294 hasRelatedWork W1978259121 @default.
- W2107954294 hasRelatedWork W2329689257 @default.
- W2107954294 hasRelatedWork W2510336565 @default.
- W2107954294 hasRelatedWork W2624778651 @default.
- W2107954294 hasRelatedWork W2626180454 @default.
- W2107954294 hasRelatedWork W2685130528 @default.
- W2107954294 hasRelatedWork W2772542282 @default.
- W2107954294 hasRelatedWork W2907768713 @default.
- W2107954294 hasRelatedWork W2946438988 @default.
- W2107954294 hasRelatedWork W2963728452 @default.
- W2107954294 hasRelatedWork W2998937160 @default.
- W2107954294 hasRelatedWork W3021385550 @default.
- W2107954294 hasRelatedWork W3083511417 @default.
- W2107954294 hasRelatedWork W3106589257 @default.