Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108099581> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2108099581 abstract "Graph partitioning requires the division of a graph's vertex set into k equally sized subsets such that some objective function is optimized. For many important ob jective functions, e. g., the number of edges incident to different partitions, the problem is MV-hard. Graph partitioning is an important task in many applications, so that a variety of algorithms and tools for its solution have been developed. Most state-of-the-art graph partitioning libraries use a variant of the Kernighan-Lin (KL) heuristic within a multilevel framework. While these libraries are very fast, their solutions do not always meet all requirements of the users. This includes the choice of the appropriate objective function and the shape of the computed partitions. Moreover, due to its sequential nature, the KL heuristic is not easy to parallelize. Thus, its use as a load balancer in parallel numerical applications requires complicated adaptations. That is why we have developed previously an inherently parallel algorithm, called BUBBLE-FOS/C (Meyerhenke et ah, IPDPS'06), which optimizes the partition shapes by a diffusive mechanism. Yet, it is too slow to be of real practical use, despite its high solution quality. In this paper, besides proving that BUBBLE-FOS/C converges towards a local optimum, we develop a much faster method for the improvement of partitionings. It is based on a different diffusive process, which is restricted to local areas of the graph and also contains a high degree of parallelism. By coupling this new technique with BUBBLE-FOS/C in a multilevel framework based on two different hierarchy construction methods, we obtain our new graph partitioning heuristic DibaP. Compared to BUBBLE-FOS/C, it shows a considerable acceleration, while retaining the positive properties of the slower algorithm. Experiments with popular benchmark graphs show an extremely good behavior. First, DibaP computes consistently better results - measured by the edge-cut and the number of boundary vertices in the summation and the maximum norm - than the state-of-the-art libraries METIS and JOSTLE. Second, with our new algorithm, we have improved the best known edge-cut values for a significant number of partitionings of six widely used benchmark graphs." @default.
- W2108099581 created "2016-06-24" @default.
- W2108099581 creator A5017390373 @default.
- W2108099581 creator A5020196859 @default.
- W2108099581 creator A5086678348 @default.
- W2108099581 date "2008-04-01" @default.
- W2108099581 modified "2023-10-13" @default.
- W2108099581 title "A new diffusion-based multilevel algorithm for computing graph partitions of very high quality" @default.
- W2108099581 cites W1549438956 @default.
- W2108099581 cites W1966461475 @default.
- W2108099581 cites W1970652797 @default.
- W2108099581 cites W1986076296 @default.
- W2108099581 cites W1989826169 @default.
- W2108099581 cites W2004951603 @default.
- W2108099581 cites W2006127455 @default.
- W2108099581 cites W2020140168 @default.
- W2108099581 cites W2054653187 @default.
- W2108099581 cites W2067976091 @default.
- W2108099581 cites W2077240465 @default.
- W2108099581 cites W2082472316 @default.
- W2108099581 cites W2104344346 @default.
- W2108099581 cites W2118953734 @default.
- W2108099581 cites W2121075095 @default.
- W2108099581 cites W2121947440 @default.
- W2108099581 cites W2122244071 @default.
- W2108099581 cites W2132745343 @default.
- W2108099581 cites W2145701440 @default.
- W2108099581 cites W2150593711 @default.
- W2108099581 cites W2161455936 @default.
- W2108099581 cites W2166417226 @default.
- W2108099581 cites W2490989163 @default.
- W2108099581 cites W3140103141 @default.
- W2108099581 cites W3142035222 @default.
- W2108099581 cites W4236269389 @default.
- W2108099581 cites W73496309 @default.
- W2108099581 doi "https://doi.org/10.1109/ipdps.2008.4536237" @default.
- W2108099581 hasPublicationYear "2008" @default.
- W2108099581 type Work @default.
- W2108099581 sameAs 2108099581 @default.
- W2108099581 citedByCount "28" @default.
- W2108099581 countsByYear W21080995812012 @default.
- W2108099581 countsByYear W21080995812014 @default.
- W2108099581 countsByYear W21080995812015 @default.
- W2108099581 countsByYear W21080995812016 @default.
- W2108099581 countsByYear W21080995812017 @default.
- W2108099581 countsByYear W21080995812018 @default.
- W2108099581 countsByYear W21080995812019 @default.
- W2108099581 countsByYear W21080995812021 @default.
- W2108099581 countsByYear W21080995812022 @default.
- W2108099581 crossrefType "proceedings-article" @default.
- W2108099581 hasAuthorship W2108099581A5017390373 @default.
- W2108099581 hasAuthorship W2108099581A5020196859 @default.
- W2108099581 hasAuthorship W2108099581A5086678348 @default.
- W2108099581 hasBestOaLocation W21080995812 @default.
- W2108099581 hasConcept C11413529 @default.
- W2108099581 hasConcept C114614502 @default.
- W2108099581 hasConcept C132525143 @default.
- W2108099581 hasConcept C154945302 @default.
- W2108099581 hasConcept C173801870 @default.
- W2108099581 hasConcept C33923547 @default.
- W2108099581 hasConcept C41008148 @default.
- W2108099581 hasConcept C42812 @default.
- W2108099581 hasConcept C48903430 @default.
- W2108099581 hasConcept C80444323 @default.
- W2108099581 hasConcept C80899671 @default.
- W2108099581 hasConceptScore W2108099581C11413529 @default.
- W2108099581 hasConceptScore W2108099581C114614502 @default.
- W2108099581 hasConceptScore W2108099581C132525143 @default.
- W2108099581 hasConceptScore W2108099581C154945302 @default.
- W2108099581 hasConceptScore W2108099581C173801870 @default.
- W2108099581 hasConceptScore W2108099581C33923547 @default.
- W2108099581 hasConceptScore W2108099581C41008148 @default.
- W2108099581 hasConceptScore W2108099581C42812 @default.
- W2108099581 hasConceptScore W2108099581C48903430 @default.
- W2108099581 hasConceptScore W2108099581C80444323 @default.
- W2108099581 hasConceptScore W2108099581C80899671 @default.
- W2108099581 hasLocation W21080995811 @default.
- W2108099581 hasLocation W21080995812 @default.
- W2108099581 hasOpenAccess W2108099581 @default.
- W2108099581 hasPrimaryLocation W21080995811 @default.
- W2108099581 hasRelatedWork W2035944803 @default.
- W2108099581 hasRelatedWork W2583811263 @default.
- W2108099581 hasRelatedWork W2782513589 @default.
- W2108099581 hasRelatedWork W2810695303 @default.
- W2108099581 hasRelatedWork W3012931947 @default.
- W2108099581 hasRelatedWork W3134869969 @default.
- W2108099581 hasRelatedWork W3139829055 @default.
- W2108099581 hasRelatedWork W3173312668 @default.
- W2108099581 hasRelatedWork W3183075326 @default.
- W2108099581 hasRelatedWork W4301046126 @default.
- W2108099581 isParatext "false" @default.
- W2108099581 isRetracted "false" @default.
- W2108099581 magId "2108099581" @default.
- W2108099581 workType "article" @default.