Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108125792> ?p ?o ?g. }
- W2108125792 abstract "High-dimensional tensors or multi-way data are becoming prevalent in areas such as biomedical imaging, chemometrics, networking and bibliometrics. Traditional approaches to finding lower dimensional representations of tensor data include flattening the data and applying matrix factorizations such as principal components analysis (PCA) or employing tensor decompositions such as the CANDECOMP / PARAFAC (CP) and Tucker decompositions. The former can lose important structure in the data, while the latter Higher-Order PCA (HOPCA) methods can be problematic in high-dimensions with many irrelevant features. We introduce frameworks for sparse tensor factorizations or Sparse HOPCA based on heuristic algorithmic approaches and by solving penalized optimization problems related to the CP decomposition. Extensions of these approaches lead to methods for general regularized tensor factorizations, multi-way Functional HOPCA and generalizations of HOPCA for structured data. We illustrate the utility of our methods for dimension reduction, feature selection, and signal recovery on simulated data and multi-dimensional microarrays and functional MRIs." @default.
- W2108125792 created "2016-06-24" @default.
- W2108125792 creator A5048412925 @default.
- W2108125792 date "2012-02-11" @default.
- W2108125792 modified "2023-09-27" @default.
- W2108125792 title "Regularized Tensor Factorizations and Higher-Order Principal Components Analysis" @default.
- W2108125792 cites W1246381107 @default.
- W2108125792 cites W1540764732 @default.
- W2108125792 cites W1963826206 @default.
- W2108125792 cites W1975900269 @default.
- W2108125792 cites W1980067858 @default.
- W2108125792 cites W1992918752 @default.
- W2108125792 cites W1995496685 @default.
- W2108125792 cites W1995963238 @default.
- W2108125792 cites W1999558567 @default.
- W2108125792 cites W2000215628 @default.
- W2108125792 cites W2009403182 @default.
- W2108125792 cites W2013807324 @default.
- W2108125792 cites W2013912476 @default.
- W2108125792 cites W2024165284 @default.
- W2108125792 cites W2024356620 @default.
- W2108125792 cites W2030854293 @default.
- W2108125792 cites W2044809283 @default.
- W2108125792 cites W2058564856 @default.
- W2108125792 cites W2069049877 @default.
- W2108125792 cites W2095141632 @default.
- W2108125792 cites W2096863518 @default.
- W2108125792 cites W2097417531 @default.
- W2108125792 cites W2097714737 @default.
- W2108125792 cites W2098290597 @default.
- W2108125792 cites W2108837778 @default.
- W2108125792 cites W2110503968 @default.
- W2108125792 cites W2110509222 @default.
- W2108125792 cites W2112532472 @default.
- W2108125792 cites W2113600901 @default.
- W2108125792 cites W2121739212 @default.
- W2108125792 cites W2135046866 @default.
- W2108125792 cites W2138019504 @default.
- W2108125792 cites W2142620091 @default.
- W2108125792 cites W2144920235 @default.
- W2108125792 cites W2153675946 @default.
- W2108125792 cites W2163318306 @default.
- W2108125792 cites W2172195418 @default.
- W2108125792 cites W227277429 @default.
- W2108125792 cites W2406138340 @default.
- W2108125792 cites W2419656545 @default.
- W2108125792 cites W2950462620 @default.
- W2108125792 cites W3021971632 @default.
- W2108125792 cites W3099514962 @default.
- W2108125792 cites W3102974460 @default.
- W2108125792 cites W3104577407 @default.
- W2108125792 hasPublicationYear "2012" @default.
- W2108125792 type Work @default.
- W2108125792 sameAs 2108125792 @default.
- W2108125792 citedByCount "9" @default.
- W2108125792 countsByYear W21081257922013 @default.
- W2108125792 countsByYear W21081257922014 @default.
- W2108125792 countsByYear W21081257922016 @default.
- W2108125792 countsByYear W21081257922017 @default.
- W2108125792 countsByYear W21081257922018 @default.
- W2108125792 countsByYear W21081257922019 @default.
- W2108125792 countsByYear W21081257922020 @default.
- W2108125792 crossrefType "posted-content" @default.
- W2108125792 hasAuthorship W2108125792A5048412925 @default.
- W2108125792 hasConcept C106487976 @default.
- W2108125792 hasConcept C114614502 @default.
- W2108125792 hasConcept C119857082 @default.
- W2108125792 hasConcept C121332964 @default.
- W2108125792 hasConcept C147597530 @default.
- W2108125792 hasConcept C148483581 @default.
- W2108125792 hasConcept C151304367 @default.
- W2108125792 hasConcept C153180895 @default.
- W2108125792 hasConcept C154945302 @default.
- W2108125792 hasConcept C155281189 @default.
- W2108125792 hasConcept C158693339 @default.
- W2108125792 hasConcept C159985019 @default.
- W2108125792 hasConcept C163716315 @default.
- W2108125792 hasConcept C185592680 @default.
- W2108125792 hasConcept C192562407 @default.
- W2108125792 hasConcept C202444582 @default.
- W2108125792 hasConcept C27438332 @default.
- W2108125792 hasConcept C33676613 @default.
- W2108125792 hasConcept C33923547 @default.
- W2108125792 hasConcept C41008148 @default.
- W2108125792 hasConcept C42355184 @default.
- W2108125792 hasConcept C56372850 @default.
- W2108125792 hasConcept C62520636 @default.
- W2108125792 hasConcept C70518039 @default.
- W2108125792 hasConcept C80444323 @default.
- W2108125792 hasConceptScore W2108125792C106487976 @default.
- W2108125792 hasConceptScore W2108125792C114614502 @default.
- W2108125792 hasConceptScore W2108125792C119857082 @default.
- W2108125792 hasConceptScore W2108125792C121332964 @default.
- W2108125792 hasConceptScore W2108125792C147597530 @default.
- W2108125792 hasConceptScore W2108125792C148483581 @default.
- W2108125792 hasConceptScore W2108125792C151304367 @default.
- W2108125792 hasConceptScore W2108125792C153180895 @default.
- W2108125792 hasConceptScore W2108125792C154945302 @default.
- W2108125792 hasConceptScore W2108125792C155281189 @default.
- W2108125792 hasConceptScore W2108125792C158693339 @default.