Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108143590> ?p ?o ?g. }
- W2108143590 endingPage "229" @default.
- W2108143590 startingPage "211" @default.
- W2108143590 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 447:211-229 (2012) - DOI: https://doi.org/10.3354/meps09503 Estimating marine resource use by the American crocodile Crocodylus acutus in southern Florida, USA Patrick V. Wheatley1,5,*, Hoyt Peckham2,3, Seth D. Newsome4, Paul L. Koch1 1Earth and Planetary Sciences Department, University of California, Santa Cruz, California 95064, USA 2Grupo Tortuguero de las Californias, La Paz, Baja California Sur, 23060 Mexico 3Center for Ocean Solutions, Stanford University, Monterey, California 93940 USA 4Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, USA 5Present address: Center for Isotope Geochemistry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA *Email: pvwheatley@lbl.gov ABSTRACT: Alligators and crocodiles differ in their physiological capacity to live in saline waters. Crocodiles can tolerate high-salinity water, at least for limited timeframes, whereas alligators and their close relatives cannot. Experiments have placed different crocodylians in various water salinities to document physiological responses, but no study has estimated the extent to which natural populations of crocodylids can live independent of fresh water. Here we estimated marine food and perhaps seawater contributions to a population of American crocodile Crocodylus acutus in southernmost Florida, USA. We evaluated the use of carbon, oxygen, and strontium isotopes as tracers of marine versus terrestrial sources. We compared C. acutus isotopic values to those of marine reptiles (marine iguanas and Pacific loggerhead turtles) and to American alligators, which require fresh water. We found that freshwater reptiles can be discriminated from those that drink seawater (or survive on metabolic and prey-included water in saline habitats) based on the magnitude of population-level oxygen isotope variation in bioapatite, whereas mean carbon isotope values discriminate between marine versus terrestrial food consumption. We used a 2 end-member (seawater and fresh water) mixing model to calculate percentage of marine resources used by C. acutus. Results indicate that adult C. acutus in southern Florida use marine food about 65% of the time and seawater or water gleaned from marine food about 80% of the time. This suggests that behavioral osmoregulatory techniques (i.e. seeking fresh water specifically for drinking, as suggested by other researchers) may not be necessary and that C. acutus is capable of being largely ecologically independent of fresh water. KEY WORDS: Osmoregulation · Saltwater tolerance · Isotope · Reptile · Alligator · Marine iguana · Sea turtle Full text in pdf format PreviousNextCite this article as: Wheatley PV, Peckham H, Newsome SD, Koch PL (2012) Estimating marine resource use by the American crocodile Crocodylus acutus in southern Florida, USA. Mar Ecol Prog Ser 447:211-229. https://doi.org/10.3354/meps09503 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 447. Online publication date: February 13, 2012 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2012 Inter-Research." @default.
- W2108143590 created "2016-06-24" @default.
- W2108143590 creator A5019442540 @default.
- W2108143590 creator A5019829159 @default.
- W2108143590 creator A5031110356 @default.
- W2108143590 creator A5082666143 @default.
- W2108143590 date "2012-02-13" @default.
- W2108143590 modified "2023-10-16" @default.
- W2108143590 title "Estimating marine resource use by the American crocodile Crocodylus acutus in southern Florida, USA" @default.
- W2108143590 cites W107012698 @default.
- W2108143590 cites W1508919297 @default.
- W2108143590 cites W1547907389 @default.
- W2108143590 cites W1968941274 @default.
- W2108143590 cites W1971527546 @default.
- W2108143590 cites W1976361674 @default.
- W2108143590 cites W1976620802 @default.
- W2108143590 cites W1976641654 @default.
- W2108143590 cites W1979557620 @default.
- W2108143590 cites W1980331872 @default.
- W2108143590 cites W1980476210 @default.
- W2108143590 cites W1980984194 @default.
- W2108143590 cites W1981137551 @default.
- W2108143590 cites W1983017748 @default.
- W2108143590 cites W1983812597 @default.
- W2108143590 cites W1988354507 @default.
- W2108143590 cites W1995366272 @default.
- W2108143590 cites W1997137838 @default.
- W2108143590 cites W2004798584 @default.
- W2108143590 cites W2008191711 @default.
- W2108143590 cites W2009404670 @default.
- W2108143590 cites W2010213262 @default.
- W2108143590 cites W2010653658 @default.
- W2108143590 cites W2011044715 @default.
- W2108143590 cites W2011284090 @default.
- W2108143590 cites W2013513989 @default.
- W2108143590 cites W2015254230 @default.
- W2108143590 cites W2015819527 @default.
- W2108143590 cites W2027153120 @default.
- W2108143590 cites W2027213961 @default.
- W2108143590 cites W2035366718 @default.
- W2108143590 cites W2039491317 @default.
- W2108143590 cites W2040388438 @default.
- W2108143590 cites W2042529881 @default.
- W2108143590 cites W2044106716 @default.
- W2108143590 cites W2044827625 @default.
- W2108143590 cites W2049523715 @default.
- W2108143590 cites W2051897812 @default.
- W2108143590 cites W2056352380 @default.
- W2108143590 cites W2058203982 @default.
- W2108143590 cites W2061502066 @default.
- W2108143590 cites W2062282533 @default.
- W2108143590 cites W2064059658 @default.
- W2108143590 cites W2067094612 @default.
- W2108143590 cites W2068453615 @default.
- W2108143590 cites W2069387267 @default.
- W2108143590 cites W2072312292 @default.
- W2108143590 cites W2077722000 @default.
- W2108143590 cites W2079226449 @default.
- W2108143590 cites W2084681227 @default.
- W2108143590 cites W2086173998 @default.
- W2108143590 cites W2093152799 @default.
- W2108143590 cites W2096761041 @default.
- W2108143590 cites W2100397887 @default.
- W2108143590 cites W2103599000 @default.
- W2108143590 cites W2105636907 @default.
- W2108143590 cites W2109082109 @default.
- W2108143590 cites W2111613312 @default.
- W2108143590 cites W2118446958 @default.
- W2108143590 cites W2127839766 @default.
- W2108143590 cites W2129225270 @default.
- W2108143590 cites W2132827427 @default.
- W2108143590 cites W2134476220 @default.
- W2108143590 cites W2136285111 @default.
- W2108143590 cites W2136517737 @default.
- W2108143590 cites W2136808414 @default.
- W2108143590 cites W2137942802 @default.
- W2108143590 cites W2143804637 @default.
- W2108143590 cites W2144132031 @default.
- W2108143590 cites W2147458641 @default.
- W2108143590 cites W2148309843 @default.
- W2108143590 cites W2149598290 @default.
- W2108143590 cites W2153422274 @default.
- W2108143590 cites W2157403821 @default.
- W2108143590 cites W2160156450 @default.
- W2108143590 cites W2160295246 @default.
- W2108143590 cites W2161251708 @default.
- W2108143590 cites W2163602922 @default.
- W2108143590 cites W2164391182 @default.
- W2108143590 cites W2164531943 @default.
- W2108143590 cites W2167053834 @default.
- W2108143590 cites W2267222981 @default.
- W2108143590 cites W2321435625 @default.
- W2108143590 cites W2323485465 @default.
- W2108143590 cites W2414477892 @default.
- W2108143590 cites W2804443980 @default.
- W2108143590 cites W4248624515 @default.
- W2108143590 doi "https://doi.org/10.3354/meps09503" @default.
- W2108143590 hasPublicationYear "2012" @default.