Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108177002> ?p ?o ?g. }
- W2108177002 abstract "Extreme learning machine (ELM) as an emergent technology has shown its good performance in classification applications. However, ELM algorithm needs to find the inversion of matrix in nature, which will limit its application on many occasions. This paper proposes an ELM speedup algorithm based on the analysis of ELM algorithm. By applying randomized approximation method, the proposed algorithm can approximate the key matrix (For example, the kernel matrix in the kernel-based ELM) with a low-rank matrix. By doing so, the complexity of the inversion can be reduced from O ( n 3 ) to O ( kn 2 + k 3 ) (n is the size of the data set, and k is the numerical rank of the approximated matrix). On the premise of not decreasing the accuracy too much, the training time can be cut down substantially, which has important significance in practical application of machine learning algorithms. The experimental results on benchmark data sets demonstrate the effectiveness of the proposed algorithm." @default.
- W2108177002 created "2016-06-24" @default.
- W2108177002 creator A5006175986 @default.
- W2108177002 creator A5085527074 @default.
- W2108177002 date "2015-07-01" @default.
- W2108177002 modified "2023-10-17" @default.
- W2108177002 title "A randomized ELM speedup algorithm" @default.
- W2108177002 cites W1532194299 @default.
- W2108177002 cites W1970950689 @default.
- W2108177002 cites W1971302895 @default.
- W2108177002 cites W1982884593 @default.
- W2108177002 cites W2001141328 @default.
- W2108177002 cites W2003690406 @default.
- W2108177002 cites W2026131661 @default.
- W2108177002 cites W2040387238 @default.
- W2108177002 cites W2100595623 @default.
- W2108177002 cites W2114686809 @default.
- W2108177002 cites W2117756735 @default.
- W2108177002 cites W2132914434 @default.
- W2108177002 cites W2141695047 @default.
- W2108177002 cites W2153635508 @default.
- W2108177002 cites W2156718197 @default.
- W2108177002 cites W2156909104 @default.
- W2108177002 cites W2157595416 @default.
- W2108177002 cites W2158054309 @default.
- W2108177002 cites W2165967751 @default.
- W2108177002 doi "https://doi.org/10.1016/j.neucom.2015.02.018" @default.
- W2108177002 hasPublicationYear "2015" @default.
- W2108177002 type Work @default.
- W2108177002 sameAs 2108177002 @default.
- W2108177002 citedByCount "4" @default.
- W2108177002 countsByYear W21081770022015 @default.
- W2108177002 countsByYear W21081770022017 @default.
- W2108177002 countsByYear W21081770022020 @default.
- W2108177002 crossrefType "journal-article" @default.
- W2108177002 hasAuthorship W2108177002A5006175986 @default.
- W2108177002 hasAuthorship W2108177002A5085527074 @default.
- W2108177002 hasConcept C106487976 @default.
- W2108177002 hasConcept C109007969 @default.
- W2108177002 hasConcept C11413529 @default.
- W2108177002 hasConcept C114614502 @default.
- W2108177002 hasConcept C128669082 @default.
- W2108177002 hasConcept C13280743 @default.
- W2108177002 hasConcept C151730666 @default.
- W2108177002 hasConcept C154945302 @default.
- W2108177002 hasConcept C159985019 @default.
- W2108177002 hasConcept C173608175 @default.
- W2108177002 hasConcept C185798385 @default.
- W2108177002 hasConcept C1893757 @default.
- W2108177002 hasConcept C192562407 @default.
- W2108177002 hasConcept C205649164 @default.
- W2108177002 hasConcept C2780150128 @default.
- W2108177002 hasConcept C33923547 @default.
- W2108177002 hasConcept C41008148 @default.
- W2108177002 hasConcept C50644808 @default.
- W2108177002 hasConcept C68339613 @default.
- W2108177002 hasConcept C74193536 @default.
- W2108177002 hasConcept C86803240 @default.
- W2108177002 hasConceptScore W2108177002C106487976 @default.
- W2108177002 hasConceptScore W2108177002C109007969 @default.
- W2108177002 hasConceptScore W2108177002C11413529 @default.
- W2108177002 hasConceptScore W2108177002C114614502 @default.
- W2108177002 hasConceptScore W2108177002C128669082 @default.
- W2108177002 hasConceptScore W2108177002C13280743 @default.
- W2108177002 hasConceptScore W2108177002C151730666 @default.
- W2108177002 hasConceptScore W2108177002C154945302 @default.
- W2108177002 hasConceptScore W2108177002C159985019 @default.
- W2108177002 hasConceptScore W2108177002C173608175 @default.
- W2108177002 hasConceptScore W2108177002C185798385 @default.
- W2108177002 hasConceptScore W2108177002C1893757 @default.
- W2108177002 hasConceptScore W2108177002C192562407 @default.
- W2108177002 hasConceptScore W2108177002C205649164 @default.
- W2108177002 hasConceptScore W2108177002C2780150128 @default.
- W2108177002 hasConceptScore W2108177002C33923547 @default.
- W2108177002 hasConceptScore W2108177002C41008148 @default.
- W2108177002 hasConceptScore W2108177002C50644808 @default.
- W2108177002 hasConceptScore W2108177002C68339613 @default.
- W2108177002 hasConceptScore W2108177002C74193536 @default.
- W2108177002 hasConceptScore W2108177002C86803240 @default.
- W2108177002 hasFunder F4320321001 @default.
- W2108177002 hasFunder F4320321884 @default.
- W2108177002 hasLocation W21081770021 @default.
- W2108177002 hasOpenAccess W2108177002 @default.
- W2108177002 hasPrimaryLocation W21081770021 @default.
- W2108177002 hasRelatedWork W1167991212 @default.
- W2108177002 hasRelatedWork W1988054014 @default.
- W2108177002 hasRelatedWork W2016924348 @default.
- W2108177002 hasRelatedWork W2045353167 @default.
- W2108177002 hasRelatedWork W2084093821 @default.
- W2108177002 hasRelatedWork W2095885101 @default.
- W2108177002 hasRelatedWork W2109844857 @default.
- W2108177002 hasRelatedWork W2115017620 @default.
- W2108177002 hasRelatedWork W2171602483 @default.
- W2108177002 hasRelatedWork W2368520314 @default.
- W2108177002 hasRelatedWork W2463277740 @default.
- W2108177002 hasRelatedWork W2485549841 @default.
- W2108177002 hasRelatedWork W2786881437 @default.
- W2108177002 hasRelatedWork W2901276090 @default.
- W2108177002 hasRelatedWork W2953610657 @default.
- W2108177002 hasRelatedWork W2954563035 @default.