Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108280101> ?p ?o ?g. }
- W2108280101 endingPage "934" @default.
- W2108280101 startingPage "905" @default.
- W2108280101 abstract "A large number of learning algorithms, for example, spectral clustering, kernel Principal Components Analysis and many manifold methods are based on estimating eigenvalues and eigenfunctions of operators defined by a similarity function or a kernel, given empirical data. Thus for the analysis of algorithms, it is an important problem to be able to assess the quality of such approximations. The contribution of our paper is two-fold: 1. We use a technique based on a concentration inequality for Hilbert spaces to provide new much simplified proofs for a number of results in spectral approximation. 2. Using these methods we provide several new results for estimating spectral properties of the graph Laplacian operator extending and strengthening results from von Luxburg et al. (2008)." @default.
- W2108280101 created "2016-06-24" @default.
- W2108280101 creator A5014532691 @default.
- W2108280101 creator A5039769658 @default.
- W2108280101 creator A5061220999 @default.
- W2108280101 date "2010-03-01" @default.
- W2108280101 modified "2023-10-02" @default.
- W2108280101 title "On Learning with Integral Operators" @default.
- W2108280101 cites W1493594095 @default.
- W2108280101 cites W1507925093 @default.
- W2108280101 cites W1512873663 @default.
- W2108280101 cites W1551558534 @default.
- W2108280101 cites W1556852487 @default.
- W2108280101 cites W1563644419 @default.
- W2108280101 cites W1575147392 @default.
- W2108280101 cites W1591017106 @default.
- W2108280101 cites W195078069 @default.
- W2108280101 cites W1965386465 @default.
- W2108280101 cites W1970781863 @default.
- W2108280101 cites W1984032850 @default.
- W2108280101 cites W1986280275 @default.
- W2108280101 cites W1989368986 @default.
- W2108280101 cites W1992774275 @default.
- W2108280101 cites W2002276939 @default.
- W2108280101 cites W2022238100 @default.
- W2108280101 cites W2027787023 @default.
- W2108280101 cites W203462006 @default.
- W2108280101 cites W2034978228 @default.
- W2108280101 cites W2047772840 @default.
- W2108280101 cites W2066457144 @default.
- W2108280101 cites W2090857812 @default.
- W2108280101 cites W2095767537 @default.
- W2108280101 cites W2099210314 @default.
- W2108280101 cites W2103336901 @default.
- W2108280101 cites W2103829273 @default.
- W2108280101 cites W2108912954 @default.
- W2108280101 cites W2123845705 @default.
- W2108280101 cites W2124623336 @default.
- W2108280101 cites W2139095575 @default.
- W2108280101 cites W2155100959 @default.
- W2108280101 cites W2163581538 @default.
- W2108280101 cites W92031474 @default.
- W2108280101 doi "https://doi.org/10.5555/1756006.1756036" @default.
- W2108280101 hasPublicationYear "2010" @default.
- W2108280101 type Work @default.
- W2108280101 sameAs 2108280101 @default.
- W2108280101 citedByCount "92" @default.
- W2108280101 countsByYear W21082801012012 @default.
- W2108280101 countsByYear W21082801012013 @default.
- W2108280101 countsByYear W21082801012014 @default.
- W2108280101 countsByYear W21082801012015 @default.
- W2108280101 countsByYear W21082801012016 @default.
- W2108280101 countsByYear W21082801012017 @default.
- W2108280101 countsByYear W21082801012018 @default.
- W2108280101 countsByYear W21082801012019 @default.
- W2108280101 countsByYear W21082801012020 @default.
- W2108280101 countsByYear W21082801012021 @default.
- W2108280101 countsByYear W21082801012022 @default.
- W2108280101 crossrefType "journal-article" @default.
- W2108280101 hasAuthorship W2108280101A5014532691 @default.
- W2108280101 hasAuthorship W2108280101A5039769658 @default.
- W2108280101 hasAuthorship W2108280101A5061220999 @default.
- W2108280101 hasConcept C104317684 @default.
- W2108280101 hasConcept C105611402 @default.
- W2108280101 hasConcept C105795698 @default.
- W2108280101 hasConcept C108710211 @default.
- W2108280101 hasConcept C115178988 @default.
- W2108280101 hasConcept C118615104 @default.
- W2108280101 hasConcept C121332964 @default.
- W2108280101 hasConcept C122280245 @default.
- W2108280101 hasConcept C12267149 @default.
- W2108280101 hasConcept C128803854 @default.
- W2108280101 hasConcept C132525143 @default.
- W2108280101 hasConcept C134306372 @default.
- W2108280101 hasConcept C149530733 @default.
- W2108280101 hasConcept C154945302 @default.
- W2108280101 hasConcept C158448853 @default.
- W2108280101 hasConcept C158693339 @default.
- W2108280101 hasConcept C165700671 @default.
- W2108280101 hasConcept C17020691 @default.
- W2108280101 hasConcept C182335926 @default.
- W2108280101 hasConcept C185592680 @default.
- W2108280101 hasConcept C202444582 @default.
- W2108280101 hasConcept C203776342 @default.
- W2108280101 hasConcept C2524010 @default.
- W2108280101 hasConcept C28826006 @default.
- W2108280101 hasConcept C33923547 @default.
- W2108280101 hasConcept C41008148 @default.
- W2108280101 hasConcept C55493867 @default.
- W2108280101 hasConcept C62520636 @default.
- W2108280101 hasConcept C62799726 @default.
- W2108280101 hasConcept C73555534 @default.
- W2108280101 hasConcept C74003402 @default.
- W2108280101 hasConcept C74193536 @default.
- W2108280101 hasConcept C80884492 @default.
- W2108280101 hasConcept C86339819 @default.
- W2108280101 hasConceptScore W2108280101C104317684 @default.
- W2108280101 hasConceptScore W2108280101C105611402 @default.