Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108282916> ?p ?o ?g. }
- W2108282916 endingPage "198" @default.
- W2108282916 startingPage "180" @default.
- W2108282916 abstract "Feature selection is an important preprocessing step in machine learning and pattern recognition. It is also a data mining task in some real-world applications. Feature quality evaluation is a key issue when designing an algorithm for feature selection. The classification margin has been used widely to evaluate feature quality in recent years. In this study, we introduce a robust loss function, called Brownboost loss, which computes the feature quality and selects the optimal feature subsets to enhance robustness. We compute the classification loss in a feature space with hypothesis-margin and minimize the loss by optimizing the weights of features. An algorithm is developed based on gradient descent using L2-norm regularization techniques. The proposed algorithm is tested using UCI datasets and gene expression datasets, respectively. The experimental results show that the proposed algorithm is effective in improving the classification robustness." @default.
- W2108282916 created "2016-06-24" @default.
- W2108282916 creator A5001958960 @default.
- W2108282916 creator A5019974853 @default.
- W2108282916 creator A5056686459 @default.
- W2108282916 creator A5069649814 @default.
- W2108282916 date "2013-12-01" @default.
- W2108282916 modified "2023-10-05" @default.
- W2108282916 title "Robust feature selection based on regularized brownboost loss" @default.
- W2108282916 cites W1596717185 @default.
- W2108282916 cites W1727290854 @default.
- W2108282916 cites W1808644423 @default.
- W2108282916 cites W1931284523 @default.
- W2108282916 cites W1968461733 @default.
- W2108282916 cites W1971881316 @default.
- W2108282916 cites W1973650202 @default.
- W2108282916 cites W1974939422 @default.
- W2108282916 cites W1980061375 @default.
- W2108282916 cites W2008794359 @default.
- W2108282916 cites W2012073623 @default.
- W2108282916 cites W2014558544 @default.
- W2108282916 cites W2015932775 @default.
- W2108282916 cites W2024046085 @default.
- W2108282916 cites W2035743720 @default.
- W2108282916 cites W2048231652 @default.
- W2108282916 cites W2054449235 @default.
- W2108282916 cites W2062102668 @default.
- W2108282916 cites W2079484126 @default.
- W2108282916 cites W2098525496 @default.
- W2108282916 cites W2100556411 @default.
- W2108282916 cites W2112827561 @default.
- W2108282916 cites W2117699623 @default.
- W2108282916 cites W2118064259 @default.
- W2108282916 cites W2125644499 @default.
- W2108282916 cites W2131148434 @default.
- W2108282916 cites W2133462743 @default.
- W2108282916 cites W2143426320 @default.
- W2108282916 cites W2147246240 @default.
- W2108282916 cites W2152734820 @default.
- W2108282916 cites W2153922613 @default.
- W2108282916 cites W2154053567 @default.
- W2108282916 cites W2163370485 @default.
- W2108282916 cites W2169038408 @default.
- W2108282916 cites W3099188570 @default.
- W2108282916 cites W3122877168 @default.
- W2108282916 doi "https://doi.org/10.1016/j.knosys.2013.09.005" @default.
- W2108282916 hasPublicationYear "2013" @default.
- W2108282916 type Work @default.
- W2108282916 sameAs 2108282916 @default.
- W2108282916 citedByCount "10" @default.
- W2108282916 countsByYear W21082829162014 @default.
- W2108282916 countsByYear W21082829162016 @default.
- W2108282916 countsByYear W21082829162017 @default.
- W2108282916 countsByYear W21082829162018 @default.
- W2108282916 countsByYear W21082829162019 @default.
- W2108282916 countsByYear W21082829162022 @default.
- W2108282916 crossrefType "journal-article" @default.
- W2108282916 hasAuthorship W2108282916A5001958960 @default.
- W2108282916 hasAuthorship W2108282916A5019974853 @default.
- W2108282916 hasAuthorship W2108282916A5056686459 @default.
- W2108282916 hasAuthorship W2108282916A5069649814 @default.
- W2108282916 hasConcept C119857082 @default.
- W2108282916 hasConcept C124101348 @default.
- W2108282916 hasConcept C138885662 @default.
- W2108282916 hasConcept C148483581 @default.
- W2108282916 hasConcept C153180895 @default.
- W2108282916 hasConcept C154945302 @default.
- W2108282916 hasConcept C2776401178 @default.
- W2108282916 hasConcept C41008148 @default.
- W2108282916 hasConcept C41895202 @default.
- W2108282916 hasConcept C81917197 @default.
- W2108282916 hasConceptScore W2108282916C119857082 @default.
- W2108282916 hasConceptScore W2108282916C124101348 @default.
- W2108282916 hasConceptScore W2108282916C138885662 @default.
- W2108282916 hasConceptScore W2108282916C148483581 @default.
- W2108282916 hasConceptScore W2108282916C153180895 @default.
- W2108282916 hasConceptScore W2108282916C154945302 @default.
- W2108282916 hasConceptScore W2108282916C2776401178 @default.
- W2108282916 hasConceptScore W2108282916C41008148 @default.
- W2108282916 hasConceptScore W2108282916C41895202 @default.
- W2108282916 hasConceptScore W2108282916C81917197 @default.
- W2108282916 hasLocation W21082829161 @default.
- W2108282916 hasOpenAccess W2108282916 @default.
- W2108282916 hasPrimaryLocation W21082829161 @default.
- W2108282916 hasRelatedWork W2316780152 @default.
- W2108282916 hasRelatedWork W2374344280 @default.
- W2108282916 hasRelatedWork W2382607599 @default.
- W2108282916 hasRelatedWork W2385233088 @default.
- W2108282916 hasRelatedWork W2546942002 @default.
- W2108282916 hasRelatedWork W2970216048 @default.
- W2108282916 hasRelatedWork W3163334550 @default.
- W2108282916 hasRelatedWork W3200179079 @default.
- W2108282916 hasRelatedWork W4293525103 @default.
- W2108282916 hasRelatedWork W2345184372 @default.
- W2108282916 hasVolume "54" @default.
- W2108282916 isParatext "false" @default.
- W2108282916 isRetracted "false" @default.
- W2108282916 magId "2108282916" @default.