Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108399251> ?p ?o ?g. }
- W2108399251 endingPage "472" @default.
- W2108399251 startingPage "462" @default.
- W2108399251 abstract "By viewing animal movement paths as realizations of a continuous stochastic process, we introduce a rigorous likelihood method for estimating the statistical parameters of movement processes. This method makes no assumption of a hidden Markov property, places no special emphasis on the sampling rate, is insensitive to irregular sampling and data gaps, can produce reasonable estimates with limited sample sizes and can be used to assign AIC values to a vast array of qualitatively different models of animal movement at the individual and population levels. To develop our approach, we consider the likelihood of the first two cumulants of stochastic processes, the mean and autocorrelation functions. Together, these measures provide a considerable degree of information regarding searching, foraging, migration and other aspects of animal movement. As a specific example, we develop the likelihood analyses necessary to contrast performance of animal movement models based on Brownian motion, the Ornstein–Uhlenbeck process and a generalization of the Ornstein–Uhlenbeck process that includes ballistic bouts. We then show how our framework also provides a new and more accurate approach to home-range estimation when compared to estimators that neglect autocorrelation in the movement path. We apply our methods to a data set on Mongolian gazelles (Procapra gutturosa) to identify the movement behaviours and their associated time and length scales that characterize the movement of each individual. Additionally, we show that gazelle annual ranges are vastly larger than those of other non-migratory ungulates." @default.
- W2108399251 created "2016-06-24" @default.
- W2108399251 creator A5005309228 @default.
- W2108399251 creator A5009512529 @default.
- W2108399251 creator A5022471857 @default.
- W2108399251 creator A5044365978 @default.
- W2108399251 creator A5052271280 @default.
- W2108399251 creator A5075674668 @default.
- W2108399251 date "2014-05-01" @default.
- W2108399251 modified "2023-10-12" @default.
- W2108399251 title "Non-Markovian maximum likelihood estimation of autocorrelated movement processes" @default.
- W2108399251 cites W1969433916 @default.
- W2108399251 cites W1970403163 @default.
- W2108399251 cites W1972709730 @default.
- W2108399251 cites W1974618482 @default.
- W2108399251 cites W1981684917 @default.
- W2108399251 cites W1985039588 @default.
- W2108399251 cites W1986316936 @default.
- W2108399251 cites W1996881778 @default.
- W2108399251 cites W1997927852 @default.
- W2108399251 cites W2018791357 @default.
- W2108399251 cites W2019481438 @default.
- W2108399251 cites W2023599936 @default.
- W2108399251 cites W2023809300 @default.
- W2108399251 cites W2036974279 @default.
- W2108399251 cites W2039158906 @default.
- W2108399251 cites W2040605710 @default.
- W2108399251 cites W2042310874 @default.
- W2108399251 cites W2060624994 @default.
- W2108399251 cites W2066418236 @default.
- W2108399251 cites W2076228522 @default.
- W2108399251 cites W2079094721 @default.
- W2108399251 cites W2080842868 @default.
- W2108399251 cites W2084582396 @default.
- W2108399251 cites W2089792340 @default.
- W2108399251 cites W2100652201 @default.
- W2108399251 cites W2101348276 @default.
- W2108399251 cites W2111526938 @default.
- W2108399251 cites W2115344139 @default.
- W2108399251 cites W2120250575 @default.
- W2108399251 cites W2124411978 @default.
- W2108399251 cites W2145287259 @default.
- W2108399251 cites W2157787485 @default.
- W2108399251 cites W2159645623 @default.
- W2108399251 cites W2177448000 @default.
- W2108399251 cites W2315121343 @default.
- W2108399251 cites W4231362780 @default.
- W2108399251 cites W4238519965 @default.
- W2108399251 cites W4376849742 @default.
- W2108399251 doi "https://doi.org/10.1111/2041-210x.12176" @default.
- W2108399251 hasPublicationYear "2014" @default.
- W2108399251 type Work @default.
- W2108399251 sameAs 2108399251 @default.
- W2108399251 citedByCount "62" @default.
- W2108399251 countsByYear W21083992512015 @default.
- W2108399251 countsByYear W21083992512016 @default.
- W2108399251 countsByYear W21083992512017 @default.
- W2108399251 countsByYear W21083992512018 @default.
- W2108399251 countsByYear W21083992512019 @default.
- W2108399251 countsByYear W21083992512020 @default.
- W2108399251 countsByYear W21083992512021 @default.
- W2108399251 countsByYear W21083992512022 @default.
- W2108399251 countsByYear W21083992512023 @default.
- W2108399251 crossrefType "journal-article" @default.
- W2108399251 hasAuthorship W2108399251A5005309228 @default.
- W2108399251 hasAuthorship W2108399251A5009512529 @default.
- W2108399251 hasAuthorship W2108399251A5022471857 @default.
- W2108399251 hasAuthorship W2108399251A5044365978 @default.
- W2108399251 hasAuthorship W2108399251A5052271280 @default.
- W2108399251 hasAuthorship W2108399251A5075674668 @default.
- W2108399251 hasBestOaLocation W21083992511 @default.
- W2108399251 hasConcept C105795698 @default.
- W2108399251 hasConcept C106131492 @default.
- W2108399251 hasConcept C140779682 @default.
- W2108399251 hasConcept C149782125 @default.
- W2108399251 hasConcept C154945302 @default.
- W2108399251 hasConcept C159985019 @default.
- W2108399251 hasConcept C185429906 @default.
- W2108399251 hasConcept C192562407 @default.
- W2108399251 hasConcept C204323151 @default.
- W2108399251 hasConcept C23224414 @default.
- W2108399251 hasConcept C31972630 @default.
- W2108399251 hasConcept C33923547 @default.
- W2108399251 hasConcept C41008148 @default.
- W2108399251 hasConcept C5297727 @default.
- W2108399251 hasConceptScore W2108399251C105795698 @default.
- W2108399251 hasConceptScore W2108399251C106131492 @default.
- W2108399251 hasConceptScore W2108399251C140779682 @default.
- W2108399251 hasConceptScore W2108399251C149782125 @default.
- W2108399251 hasConceptScore W2108399251C154945302 @default.
- W2108399251 hasConceptScore W2108399251C159985019 @default.
- W2108399251 hasConceptScore W2108399251C185429906 @default.
- W2108399251 hasConceptScore W2108399251C192562407 @default.
- W2108399251 hasConceptScore W2108399251C204323151 @default.
- W2108399251 hasConceptScore W2108399251C23224414 @default.
- W2108399251 hasConceptScore W2108399251C31972630 @default.
- W2108399251 hasConceptScore W2108399251C33923547 @default.
- W2108399251 hasConceptScore W2108399251C41008148 @default.