Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108441106> ?p ?o ?g. }
- W2108441106 abstract "Aggregation is an operation that plays a key role in multidimensional OLAP (MOLAP). Existing aggregation methods in MOLAP have been proposed for file structures such as multidimensional arrays. These file structures are suitable for data with uniform distributions, but do not work well with skewed distributions. In this paper, we consider an aggregation method that uses dynamic multidimensional files adapting to skewed distributions. In these multidimensional files, the sizes of page regions vary according to the data density in these regions, and the pages that belong to a larger region are accessed multiple times while computing aggregations. To solve this problem, we first present an aggregation computation model, called the Disjoint-Inclusive Partition (DIP) computation model, that is the formal basis of our approach. Based on this model, we then present the one-pass aggregation algorithm. This algorithm computes aggregations using the one-pass buffer size, which is the minimum buffer size required for guaranteeing one disk access per page. We prove that our aggregation algorithm is optimal with respect to the one-pass buffer size under our aggregation computation model. Using the DIP computation model allows us to correctly predict the order of accessing data pages in advance. Thus, our algorithm achieves the optimal one-pass buffer size by using a buffer replacement policy, such as Belady's B0 or Toss-Immediate policies, that exploits the page access order computed in advance. Since the page access order is not known a priori in general, these policies have been known to lack practicality despite its theoretic significance. Nevertheless, in this paper, we show that these policies can be effectively used for aggregation computation.We have conducted extensive experiments. We first demonstrate that the one-pass buffer size theoretically derived is indeed correct in real environments. We then compare the performance of the one-pass algorithm with those of other ones. Experimental results for a real data set show that the one-pass algorithm reduces the number of disk accesses by up to 7.31 times compared with a naive algorithm. We also show that the memory requirement of our algorithm for processing the aggregation in one-pass is very small being 0.05%|0.6% of the size of the database. These results indicate that our algorithm is practically usable even for a fairly large database. We believe our work provides an excellent formal basis for investigating further issues in computing aggregations in MOLAP." @default.
- W2108441106 created "2016-06-24" @default.
- W2108441106 creator A5021272202 @default.
- W2108441106 creator A5034210720 @default.
- W2108441106 creator A5039165136 @default.
- W2108441106 creator A5067437365 @default.
- W2108441106 date "2002-01-01" @default.
- W2108441106 modified "2023-09-28" @default.
- W2108441106 title "A One-Pass Aggregation Algorithm with the Optimal Buffer Size in Multidimensional OLAP" @default.
- W2108441106 cites W1487184349 @default.
- W2108441106 cites W1506170043 @default.
- W2108441106 cites W1512840853 @default.
- W2108441106 cites W1580149603 @default.
- W2108441106 cites W1589269155 @default.
- W2108441106 cites W1976219590 @default.
- W2108441106 cites W2007625694 @default.
- W2108441106 cites W2008365755 @default.
- W2108441106 cites W2014267653 @default.
- W2108441106 cites W2021125030 @default.
- W2108441106 cites W2044240774 @default.
- W2108441106 cites W2046437776 @default.
- W2108441106 cites W2047984902 @default.
- W2108441106 cites W2050576295 @default.
- W2108441106 cites W2054308357 @default.
- W2108441106 cites W2057552436 @default.
- W2108441106 cites W2072764742 @default.
- W2108441106 cites W2106642566 @default.
- W2108441106 cites W2115678122 @default.
- W2108441106 cites W2149173084 @default.
- W2108441106 cites W2150950420 @default.
- W2108441106 cites W2151135734 @default.
- W2108441106 cites W2158237121 @default.
- W2108441106 cites W2163772659 @default.
- W2108441106 doi "https://doi.org/10.1016/b978-155860869-6/50075-5" @default.
- W2108441106 hasPublicationYear "2002" @default.
- W2108441106 type Work @default.
- W2108441106 sameAs 2108441106 @default.
- W2108441106 citedByCount "1" @default.
- W2108441106 crossrefType "book-chapter" @default.
- W2108441106 hasAuthorship W2108441106A5021272202 @default.
- W2108441106 hasAuthorship W2108441106A5034210720 @default.
- W2108441106 hasAuthorship W2108441106A5039165136 @default.
- W2108441106 hasAuthorship W2108441106A5067437365 @default.
- W2108441106 hasConcept C111472728 @default.
- W2108441106 hasConcept C111919701 @default.
- W2108441106 hasConcept C11413529 @default.
- W2108441106 hasConcept C114614502 @default.
- W2108441106 hasConcept C135572916 @default.
- W2108441106 hasConcept C138885662 @default.
- W2108441106 hasConcept C145018004 @default.
- W2108441106 hasConcept C165696696 @default.
- W2108441106 hasConcept C201932085 @default.
- W2108441106 hasConcept C2776029614 @default.
- W2108441106 hasConcept C33923547 @default.
- W2108441106 hasConcept C38652104 @default.
- W2108441106 hasConcept C41008148 @default.
- W2108441106 hasConcept C42812 @default.
- W2108441106 hasConcept C45340560 @default.
- W2108441106 hasConcept C45374587 @default.
- W2108441106 hasConcept C75553542 @default.
- W2108441106 hasConcept C76155785 @default.
- W2108441106 hasConcept C77088390 @default.
- W2108441106 hasConcept C80444323 @default.
- W2108441106 hasConceptScore W2108441106C111472728 @default.
- W2108441106 hasConceptScore W2108441106C111919701 @default.
- W2108441106 hasConceptScore W2108441106C11413529 @default.
- W2108441106 hasConceptScore W2108441106C114614502 @default.
- W2108441106 hasConceptScore W2108441106C135572916 @default.
- W2108441106 hasConceptScore W2108441106C138885662 @default.
- W2108441106 hasConceptScore W2108441106C145018004 @default.
- W2108441106 hasConceptScore W2108441106C165696696 @default.
- W2108441106 hasConceptScore W2108441106C201932085 @default.
- W2108441106 hasConceptScore W2108441106C2776029614 @default.
- W2108441106 hasConceptScore W2108441106C33923547 @default.
- W2108441106 hasConceptScore W2108441106C38652104 @default.
- W2108441106 hasConceptScore W2108441106C41008148 @default.
- W2108441106 hasConceptScore W2108441106C42812 @default.
- W2108441106 hasConceptScore W2108441106C45340560 @default.
- W2108441106 hasConceptScore W2108441106C45374587 @default.
- W2108441106 hasConceptScore W2108441106C75553542 @default.
- W2108441106 hasConceptScore W2108441106C76155785 @default.
- W2108441106 hasConceptScore W2108441106C77088390 @default.
- W2108441106 hasConceptScore W2108441106C80444323 @default.
- W2108441106 hasLocation W21084411061 @default.
- W2108441106 hasOpenAccess W2108441106 @default.
- W2108441106 hasPrimaryLocation W21084411061 @default.
- W2108441106 hasRelatedWork W1534618250 @default.
- W2108441106 hasRelatedWork W1555067179 @default.
- W2108441106 hasRelatedWork W158921352 @default.
- W2108441106 hasRelatedWork W1604861835 @default.
- W2108441106 hasRelatedWork W1864653151 @default.
- W2108441106 hasRelatedWork W1963953069 @default.
- W2108441106 hasRelatedWork W1972928435 @default.
- W2108441106 hasRelatedWork W1991154551 @default.
- W2108441106 hasRelatedWork W2003719432 @default.
- W2108441106 hasRelatedWork W2066623533 @default.
- W2108441106 hasRelatedWork W2091332858 @default.
- W2108441106 hasRelatedWork W2098634622 @default.
- W2108441106 hasRelatedWork W2115678122 @default.
- W2108441106 hasRelatedWork W2119616902 @default.