Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108443364> ?p ?o ?g. }
- W2108443364 endingPage "265" @default.
- W2108443364 startingPage "254" @default.
- W2108443364 abstract "This article considers high-dimensional regression problems in which the number of predictors p exceeds the sample size n. We develop a model-averaging procedure for high-dimensional regression problems. Unlike most variable selection studies featuring the identification of true predictors, our focus here is on the prediction accuracy for the true conditional mean of y given the p predictors. Our method consists of two steps. The first step is to construct a class of regression models, each with a smaller number of regressors, to avoid the degeneracy of the information matrix. The second step is to find suitable model weights for averaging. To minimize the prediction error, we estimate the model weights using a delete-one cross-validation procedure. Departing from the literature of model averaging that requires the weights always sum to one, an important improvement we introduce is to remove this constraint. We derive some theoretical results to justify our procedure. A theorem is proved, showing that delete-one cross-validation achieves the lowest possible prediction loss asymptotically. This optimality result requires a condition that unravels an important feature of high-dimensional regression. The prediction error of any individual model in the class for averaging is required to be higher than the classic root n rate under the traditional parametric regression. This condition reflects the difficulty of high-dimensional regression and it depicts a situation especially meaningful for p > n. We also conduct a simulation study to illustrate the merits of the proposed approach over several existing methods, including lasso, group lasso, forward regression, Phase Coupled (PC)-simple algorithm, Akaike information criterion (AIC) model-averaging, Bayesian information criterion (BIC) model-averaging methods, and SCAD (smoothly clipped absolute deviation). This approach uses quadratic programming to overcome the computing time issue commonly encountered in the cross-validation literature. Supplementary materials for this article are available online." @default.
- W2108443364 created "2016-06-24" @default.
- W2108443364 creator A5001559498 @default.
- W2108443364 creator A5028320210 @default.
- W2108443364 date "2014-01-02" @default.
- W2108443364 modified "2023-10-16" @default.
- W2108443364 title "A Model-Averaging Approach for High-Dimensional Regression" @default.
- W2108443364 cites W1603903339 @default.
- W2108443364 cites W1965125844 @default.
- W2108443364 cites W1974356961 @default.
- W2108443364 cites W1982652137 @default.
- W2108443364 cites W1994331360 @default.
- W2108443364 cites W1995691260 @default.
- W2108443364 cites W2014360396 @default.
- W2108443364 cites W2014417816 @default.
- W2108443364 cites W2020925091 @default.
- W2108443364 cites W2025349443 @default.
- W2108443364 cites W2035240057 @default.
- W2108443364 cites W2038845890 @default.
- W2108443364 cites W2050031210 @default.
- W2108443364 cites W2052025831 @default.
- W2108443364 cites W2056481711 @default.
- W2108443364 cites W2056933586 @default.
- W2108443364 cites W2057331441 @default.
- W2108443364 cites W2063978378 @default.
- W2108443364 cites W2074682976 @default.
- W2108443364 cites W2106398669 @default.
- W2108443364 cites W2111051773 @default.
- W2108443364 cites W2111292279 @default.
- W2108443364 cites W2122196572 @default.
- W2108443364 cites W2122825543 @default.
- W2108443364 cites W2125251038 @default.
- W2108443364 cites W2126584287 @default.
- W2108443364 cites W2138019504 @default.
- W2108443364 cites W2152933101 @default.
- W2108443364 cites W2154560360 @default.
- W2108443364 cites W2169847599 @default.
- W2108443364 cites W2259472751 @default.
- W2108443364 cites W27682692 @default.
- W2108443364 cites W3105340263 @default.
- W2108443364 cites W3106108064 @default.
- W2108443364 cites W3122206234 @default.
- W2108443364 cites W3122705774 @default.
- W2108443364 cites W3124629785 @default.
- W2108443364 cites W3125063688 @default.
- W2108443364 cites W3125613485 @default.
- W2108443364 cites W4211177544 @default.
- W2108443364 doi "https://doi.org/10.1080/01621459.2013.838168" @default.
- W2108443364 hasPublicationYear "2014" @default.
- W2108443364 type Work @default.
- W2108443364 sameAs 2108443364 @default.
- W2108443364 citedByCount "132" @default.
- W2108443364 countsByYear W21084433642015 @default.
- W2108443364 countsByYear W21084433642016 @default.
- W2108443364 countsByYear W21084433642017 @default.
- W2108443364 countsByYear W21084433642018 @default.
- W2108443364 countsByYear W21084433642019 @default.
- W2108443364 countsByYear W21084433642020 @default.
- W2108443364 countsByYear W21084433642021 @default.
- W2108443364 countsByYear W21084433642022 @default.
- W2108443364 countsByYear W21084433642023 @default.
- W2108443364 crossrefType "journal-article" @default.
- W2108443364 hasAuthorship W2108443364A5001559498 @default.
- W2108443364 hasAuthorship W2108443364A5028320210 @default.
- W2108443364 hasConcept C105795698 @default.
- W2108443364 hasConcept C11413529 @default.
- W2108443364 hasConcept C136764020 @default.
- W2108443364 hasConcept C148483581 @default.
- W2108443364 hasConcept C152877465 @default.
- W2108443364 hasConcept C154945302 @default.
- W2108443364 hasConcept C203868755 @default.
- W2108443364 hasConcept C28826006 @default.
- W2108443364 hasConcept C33923547 @default.
- W2108443364 hasConcept C37616216 @default.
- W2108443364 hasConcept C41008148 @default.
- W2108443364 hasConcept C83546350 @default.
- W2108443364 hasConcept C93959086 @default.
- W2108443364 hasConceptScore W2108443364C105795698 @default.
- W2108443364 hasConceptScore W2108443364C11413529 @default.
- W2108443364 hasConceptScore W2108443364C136764020 @default.
- W2108443364 hasConceptScore W2108443364C148483581 @default.
- W2108443364 hasConceptScore W2108443364C152877465 @default.
- W2108443364 hasConceptScore W2108443364C154945302 @default.
- W2108443364 hasConceptScore W2108443364C203868755 @default.
- W2108443364 hasConceptScore W2108443364C28826006 @default.
- W2108443364 hasConceptScore W2108443364C33923547 @default.
- W2108443364 hasConceptScore W2108443364C37616216 @default.
- W2108443364 hasConceptScore W2108443364C41008148 @default.
- W2108443364 hasConceptScore W2108443364C83546350 @default.
- W2108443364 hasConceptScore W2108443364C93959086 @default.
- W2108443364 hasIssue "505" @default.
- W2108443364 hasLocation W21084433641 @default.
- W2108443364 hasOpenAccess W2108443364 @default.
- W2108443364 hasPrimaryLocation W21084433641 @default.
- W2108443364 hasRelatedWork W1615597061 @default.
- W2108443364 hasRelatedWork W1997711767 @default.
- W2108443364 hasRelatedWork W2380784125 @default.
- W2108443364 hasRelatedWork W2468272465 @default.