Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108445582> ?p ?o ?g. }
- W2108445582 abstract "[1] The air quality and climate forcing impacts of atmospheric aerosols in a metropolitan region depend on the amount, composition, and size of the aerosol transported into the region; the input and removal of aerosols and aerosol precursors within the region; and the subsequent chemical processing in the atmosphere. These factors were studied in the Houston-Galveston-Gulf of Mexico region, aboard the NOAA R/V Ronald H. Brown during the Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS 2006). The aerosol measured in the Gulf of Mexico during onshore flow (low radon concentrations indicating no contact with land for several days) was highly impacted by Saharan dust and what appear to be ship emissions (acidic sulfate and nitrate). Mean (median) mass concentrations of the total submicrometer and supermicrometer aerosol were 6.5 (4.6) μg m−3 and 17.2 (8.7) μg m−3, respectively. These mass loadings of “background” aerosol are much higher than typically observed in the marine atmosphere and thus have a substantial impact on the radiative energy balance over the Gulf of Mexico and particulate matter (PM) loadings (air quality) in the Houston-Galveston area. As this background aerosol moved onshore, local urban and industrial sources added an organic rich submicrometer component (66% particulate organic matter (POM), 20% sulfate, 14% elemental carbon) but no significant supermicrometer aerosol. The resulting aerosol had mean (median) mass concentrations of the total submicrometer and supermicrometer aerosol of 10.0 (9.1) μg m−3 and 16.8 (11.2) μg m−3, respectively. These air masses, with minimal processing of urban emissions contained the highest SO2/(SO2 + SO4=) ratios and the highest hydrocarbon-like organic aerosol to total organic aerosol ratios (HOA/POM). In contrast, during periods of offshore flow, the aerosol was more processed and, therefore, much richer in oxygenated organic aerosol (OOA). Mean (median) mass concentrations of the total submicrometer and supermicrometer aerosol were 20.8 (18.6) μg m−3 and 7.4 (5.0) μg m−3, respectively. Sorting air masses based on their trajectories and time over land provides a means to examine the effects of transport and subsequent chemical processing. Understanding and parameterizing these processes is critical for the chemical transport modeling that forms the basis for air quality forecasts and radiative forcing calculations." @default.
- W2108445582 created "2016-06-24" @default.
- W2108445582 creator A5005526984 @default.
- W2108445582 creator A5010059066 @default.
- W2108445582 creator A5013671936 @default.
- W2108445582 creator A5025540896 @default.
- W2108445582 creator A5036560566 @default.
- W2108445582 creator A5047723373 @default.
- W2108445582 creator A5048444141 @default.
- W2108445582 creator A5055361102 @default.
- W2108445582 creator A5060370307 @default.
- W2108445582 creator A5074963581 @default.
- W2108445582 creator A5075958432 @default.
- W2108445582 creator A5089393341 @default.
- W2108445582 date "2008-11-27" @default.
- W2108445582 modified "2023-09-25" @default.
- W2108445582 title "Boundary layer aerosol chemistry during TexAQS/GoMACCS 2006: Insights into aerosol sources and transformation processes" @default.
- W2108445582 cites W1220726486 @default.
- W2108445582 cites W1539629734 @default.
- W2108445582 cites W1561878391 @default.
- W2108445582 cites W1967483130 @default.
- W2108445582 cites W1969371961 @default.
- W2108445582 cites W1973477740 @default.
- W2108445582 cites W1982056270 @default.
- W2108445582 cites W1984155600 @default.
- W2108445582 cites W1988963778 @default.
- W2108445582 cites W2002264985 @default.
- W2108445582 cites W2014001974 @default.
- W2108445582 cites W2015962699 @default.
- W2108445582 cites W2027163382 @default.
- W2108445582 cites W2030018441 @default.
- W2108445582 cites W2030733465 @default.
- W2108445582 cites W2036018762 @default.
- W2108445582 cites W2045864072 @default.
- W2108445582 cites W2052826296 @default.
- W2108445582 cites W2060654074 @default.
- W2108445582 cites W2061572473 @default.
- W2108445582 cites W2061577002 @default.
- W2108445582 cites W2066352692 @default.
- W2108445582 cites W2074863041 @default.
- W2108445582 cites W2076934845 @default.
- W2108445582 cites W2080532076 @default.
- W2108445582 cites W2083365286 @default.
- W2108445582 cites W2084333024 @default.
- W2108445582 cites W2084506357 @default.
- W2108445582 cites W2091167939 @default.
- W2108445582 cites W2091172176 @default.
- W2108445582 cites W2092838154 @default.
- W2108445582 cites W2095207756 @default.
- W2108445582 cites W2102239728 @default.
- W2108445582 cites W2104274770 @default.
- W2108445582 cites W2105270162 @default.
- W2108445582 cites W2106088653 @default.
- W2108445582 cites W2106585632 @default.
- W2108445582 cites W2112632155 @default.
- W2108445582 cites W2114826007 @default.
- W2108445582 cites W2117610650 @default.
- W2108445582 cites W2118032798 @default.
- W2108445582 cites W2120033713 @default.
- W2108445582 cites W2131565340 @default.
- W2108445582 cites W2135400312 @default.
- W2108445582 cites W2136092558 @default.
- W2108445582 cites W2136495481 @default.
- W2108445582 cites W2139089373 @default.
- W2108445582 cites W2150572267 @default.
- W2108445582 cites W2152418610 @default.
- W2108445582 cites W2153114748 @default.
- W2108445582 cites W2155618755 @default.
- W2108445582 cites W2158989459 @default.
- W2108445582 cites W2162912069 @default.
- W2108445582 cites W2164713712 @default.
- W2108445582 cites W2164840653 @default.
- W2108445582 cites W2172221022 @default.
- W2108445582 cites W2291431326 @default.
- W2108445582 cites W4238691261 @default.
- W2108445582 cites W4256024597 @default.
- W2108445582 doi "https://doi.org/10.1029/2008jd010023" @default.
- W2108445582 hasPublicationYear "2008" @default.
- W2108445582 type Work @default.
- W2108445582 sameAs 2108445582 @default.
- W2108445582 citedByCount "72" @default.
- W2108445582 countsByYear W21084455822012 @default.
- W2108445582 countsByYear W21084455822013 @default.
- W2108445582 countsByYear W21084455822014 @default.
- W2108445582 countsByYear W21084455822015 @default.
- W2108445582 countsByYear W21084455822016 @default.
- W2108445582 countsByYear W21084455822017 @default.
- W2108445582 countsByYear W21084455822018 @default.
- W2108445582 countsByYear W21084455822019 @default.
- W2108445582 countsByYear W21084455822020 @default.
- W2108445582 countsByYear W21084455822021 @default.
- W2108445582 countsByYear W21084455822022 @default.
- W2108445582 countsByYear W21084455822023 @default.
- W2108445582 crossrefType "journal-article" @default.
- W2108445582 hasAuthorship W2108445582A5005526984 @default.
- W2108445582 hasAuthorship W2108445582A5010059066 @default.
- W2108445582 hasAuthorship W2108445582A5013671936 @default.
- W2108445582 hasAuthorship W2108445582A5025540896 @default.
- W2108445582 hasAuthorship W2108445582A5036560566 @default.
- W2108445582 hasAuthorship W2108445582A5047723373 @default.